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Abstract—The connectivity model of a power distribution
network can easily become outdated due to system changes
occurring in the field. Maintaining and sustaining an accurate
connectivity model is a key challenge for distribution utilities
worldwide. This work focuses on inferring customer to phase
connectivity using machine learning techniques. Using voltage
time series measurements collected from customer smart meters
as the feature set for training classifiers, we study the performance
of supervised, semi-supervised and unsupervised techniques. We
report analysis and field validation results based on real smart
meter measurements collected from three feeder circuits of a large
distribution network in North America.

I. INTRODUCTION

The connectivity model (CM) of the physical power distribution
network specifies how the devices, assets, and customers are
interconnected downstream of a distribution substation. For
example, which customer is powered by which distribution
transformer, which customer is powered by which phase of
the feeder, and so on. CM essentially provides a coarse-grained
view of the network topology. A common problem faced by
distribution utilities worldwide is an inaccurate or unknown
CM of their network when compared to the actual connectivity
that exists on the field. The CM may not always be updated
or tracked based on changes made by field crews and its
accuracy deteriorates over time due to maintenance, repairs,
and restoration activities following faults or outages. Moreover
during large scale outages, there is often a trade-off between
expediting restoration versus tracking changes being made to
the distribution network.

While CM is foundational to planning, operations, and
maintenance of distribution networks, the key factors driving
utilities to improve its accuracy are effectively faster restora-
tion and the ability to accurately communicate with impacted
customers during outages. The annual cost of power interrup-
tions in US is estimated to be $79B with 106 ± 54 outage
minutes per customer. Interruptions in electric service occur
from time to time due to a number of reasons including storms,
aging assets, excess loading from heat waves, and other system
disturbances. Any analysis following a fault in the distribution
system uses the CM to identify root causes and determine
the appropriate course of action. An accurate CM minimizes
diagnostic time and the crew time in the field, leading to
reduced outage minutes and improved system availability [1].

During outages, utilities seek to inform customers about
the status of restoration and the expected downtimes. The
CM is required to localise customers downstream of a faulted
device and to map each fault with the right set of outaged
customers for communication. An inaccurate CM increases the

risk of erroneous communication and limits a utility’s ability to
provide customized and timely information to their customers,
which may negatively impact customer relations. Additionally,
an accurate CM is required to localise losses, estimate loading
at unmetered points such as distribution transformers, and
ensure a balanced infusion of energy back into the distribution
grid when customers have behind-the-meter resources such as
distributed generation and electric vehicles/storage [2, 3, 4].

Existing techniques to maintain an accurate CM include the
use of manual field inspections and power line communications
(PLC). Manual inspections are expensive and unsustainable as
field configurations change over time and therefore these need
to be repeated periodically. The PLC approach requires meters
to be able to read and write signals onto the power-line and is
capital intensive. Additionally, challenges arise as signals may
not propagate over long distances or across assets.

Leading utilities are undertaking initiatives to modernize
their information management and data analytics capabilities
in order to realize the benefits of smart grid deployments.
This work focuses on the use of data already available from a
distribution network to infer its phase connectivity model i.e.
which customer is powered by which phase of a given feeder.
Prior work has proposed analytics techniques that require
voltage measurements from both customer smart meters as
well as feeder meters to infer phase [5]. In practice however,
not all feeders are instrumented with meters, which limits the
applicability of such techniques. Instead, our approach relies
solely on voltage measurements collected from smart meters in
combination with any existing but partially accurate customer
to phase mapping. Customer phase is inferred using learning
techniques that can either predict phase based on a training set
or update an inaccurate customer to phase mapping. We con-
sider supervised, semi-supervised, and unsupervised learning
techniques and report experimental as well as field validation
results based on analysis of data collected from customers
of a large distribution network in North America. The data
includes average RMS values of voltage recorded once every
5 minutes from more than 5K customers across 3 feeders for
about 2 months. The performance of techniques is estimated
by comparing the computed phase mapping with the ground
truth obtained through manual field inspections and also the
prior customer phase as per the utility’s database.

Use of machine learning techniques to infer customer phase
has a number of advantages:
1. During restoration efforts following storms and outages, the
crew may alter the phase in certain segments of the feeder
to restore power to customers. Therefore voltage data from
customers under unaffected segments of the feeder may be



used to train a classifier that can predict the new phases of
affected customers.
2. By training a classifier using an existing yet partially
accurate customer to phase mapping, learning techniques may
be used to identify inconsistencies and correct the exist-
ing mapping. This is useful in operational settings as each
restoration affects a limited set of customers. Therefore the
existing mapping may be automatically updated with the help
of subsequent voltage measurements.

We view the main contributions of this work as follows:
1. A novel approach is proposed that infers customer to
phase mapping using machine learning techniques. The algo-
rithms infer customer phase solely from voltage measurements
collected from customer smart meters in combination with
existing but partially accurate customer to phase mapping.

2. We compare the performance of different learning ap-
proaches: support-vector machines (SVM), label propagation,
and K-MEANS algorithm initialized using existing customer
to phase mapping. We show that these techniques may be
used to both predict the unknown phase of customers using
a small training set or update an existing but inaccurate phase
connectivity model. We observe that while SVMs yield the
highest accuracy, the K-MEANS algorithm is more robust to
errors in the existing connectivity.

3. The methods are outlined along with empirical and field
validation results based on real voltage measurements collected
from customers of a large distribution network in North
America. Our results indicate that despite inaccuracies in the
existing customer to phase mapping, the algorithms generally
yield an updated mapping of higher accuracy.

The rest of the paper is organized as follows. Section II
explains the topology of a distribution network and its connec-
tivity model. Section III describes our approach to infer phase
using SVM, label propagation, and K-MEANS respectively.
Section IV and V present empirical results while Section VI
presents results from field validation. Finally, Section VII
describes prior work before we conclude in Section VIII.

II. DISTRIBUTION NETWORK & PHASE CONNECTIVITY

Electric power is generated in large power plants as 3-phase
AC voltage and reaches distribution via a transmission system.
The distribution system starts from the distribution substation
and consists of primary and secondary networks. The primary
network consists of 3-phase feeders which carry power at
medium voltage from the substation transformers to the distri-
bution transformers (DTs). A 3-phase feeder consists of three
transmission lines, usually labeled as A, B and C, which carry
AC power with their voltage waveforms shifted by 120o. A DT
receives power by tapping onto one of the 3 phases of a feeder
and is generally single-phase (1-phase). On average a DT might
serve about 8 − 10 single-phase residential customers. A few
DTs that serve larger loads such as super-markets or office
buildings may be 2 or 3-phase. [4].

The CM of a distribution network specifies the mapping
between various assets and customers downstream of a sub-
station. In particular, which customer is powered by which
DT, which DT is powered by which feeder and phase, and so
on. For example, the CM of the distribution system in Fig. 1

Customer Transformer Phase
C1,C2 DT1 A
C3,C4 DT2 C

Fig. 1. Simplified view of a distribution network and customer to phase
mapping

records that customers C1,C2 are powered by distribution
transformer DT1, while C3,C4 are powered by DT2. DT1 is
powered by phase A of feeder F1, while DT2 is powered by
phase C of F1. In the above example, since the distribution
transformers are single-phase (1-phase), customer phase is
same as the transformer phase.
Phase Connectivity Errors. The most common errors in
the CM are related to the mapping between customers and
phases of the feeder. For example, the phase of a customer
or distribution transformer may be recorded incorrectly or
missing in the database. This work focusses on identifying and
correcting these errors using voltage data from smart meters.

A. Data Sources

Power measurements in a distribution network are generally
available from customer smart meters and on-grid sensors.
Customer smart meters generally record periodic measure-
ments of load (kWh) and voltage (RMS value) over small time
intervals of 5 to 30 min as setup by the utility. Instrumentation
of on-grid sensors or feeder meters (SCADA devices) depends
on the level of monitoring enabled in the distribution network.
These are not always available and not all feeders may have
been metered.

In this work, we consider voltage measurements from
customers belonging to 3 anonymized feeder circuits from two
substations of a North American distribution network. Each
circuit is fed at 13.2kV and serves more than 2K residential,
commercial and industrial customers. For each feeder circuit,
our dataset comprises of the following:
Smart meter data: We have two months of voltage measure-
ments from customers which are powered by 1-phase overhead
(poletop) distribution transformers. These are average RMS
values of voltage in the 120V range, which are recorded once
every 5 minutes up to a precision of one decimal place. The
measurements also have missing values.
Customer to Phase Connectivity: The phase of overhead 1-
phase distribution transformers is available before and after
manual field inspections which we denote as the database
solution (possibly inaccurate) and the ground truth (100%
accurate) respectively. Customer phase is same as transformer
phase in case of 1-phase transformers. In Sections IV & V,
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Fig. 2. Cluster scatter plots showing the partition of customers based on phase. (left): Raw dataset, (center): Delta dataset and (right): Binary dataset

we test our results against the ground truth. In Section VI, we
use both the database solution as well as the ground truth.

III. MACHINE LEARNING APPROACHES

Our approach to infer phase connectivity leverages the fact
that the voltage variations observed by customers powered by
the same phase tend to be more “similar”. However, there
are different ways of comparing voltage measurements. In
the following, we compare 3 data transformations and then
describe the different machine learning approaches. Our goal
is to essentially classify customers into three groups and label
these groups as A, B, and C corresponding to three phases,
using customer voltage measurements as the feature sets.

A. Voltage Data Transformations

Let vi,t denote the raw RMS voltage measurements from
customer i in the tth time step, t ∈ {1, . . . ,m}. We compute
the continuous voltage fluctuations as δi,t = vi,t − vi,t−1.
We also discretize these to obtain binary fluctuations, which
we denote by bi,t. Let Vi = [vi,t]m×1 denote the m-
dimensional observation vector that holds the time series of
voltage measurements obtained from customer i. Similarly, let
∆i and Bi denote the delta and binary observation vectors
respectively. We assume that voltage measurements are ap-
proximately synchronised across customers.

Thus for each customer i, we have three datasets: (i) Raw:
original data Vi, (ii) Delta: continuous fluctuations ∆i, and (iii)
Binary: discretized fluctuations Bi. In order to identify which
among the three forms of data is best suited to be used as
the feature set, we consider the simple problem of partitioning
customers belonging to two phases (A and B) of a circuit into
2 groups. Towards this, we apply the K-MEANS algorithm [6,7]
on each dataset using correlation distance as the measure of
similarity between the customers. Fig. 2 shows the benchmark
cluster scatter plots for two phases A and B, which compare
the computed clusters with the ground truth. The plots show
higher accuracy for Binary when compared to Raw or Delta
datasets. Thus, in the rest of the work, we use the Binary
dataset as the feature set for classification.

B. Support Vector Machines (SVM)

Support Vector Machine is considered to be one of the best su-
pervised learning models available in state-of-the-art machine
learning literature [8,9]. Given a labeled training set {xi, yi},
i = 1, 2, · · · , n, xi ∈ R

d, and yi ∈ {−1,+1}, SVM learns
an optimum hyperplane that separates the positive from the
negative samples and maximizes the margin between the two
classes. Given a hyperplane characterized by its direction w
and position b, SVM learns these parameters by solving the

following optimization problem

min
||w2||

2
+ C

∑
i

ξi s.t. yi(wTxi + b) ≥ 1− ξi (1)

where ξi, ∀i = 1, 2, · · ·n are slack variables introduced to
relax the optimization as the dataset may not always be linearly
separable. Once the training is complete and the parameters w
and b are learnt, it is possible to classify any unlabeled point yi
as +1 if wTyi ≥ +1; and −1 otherwise. The above approach
is extended for multi-class classification i.e. when there are
more than two labels in the data set, by "one-against-one" or
"one-against-all" [10] methods. For our experiments, we use
the LIBSVM package [11].

C. Label Propagation

Semi-supervised learning approaches are those in which the
learning mechanism takes advantage of both the labeled and
the unlabeled data for classification problems. Label propaga-
tion is a well known semi-supervised learning technique. In
this work, we use the algorithm proposed by Raghavan et.
al. [12] which uses a graph-structure based approach for label
propagation. In addition to being a simple algorithm that is
easy to visualise, its main advantages over other label propa-
gation approaches include the fact that it only uses the network
structure for guidance and does not require optimisation or an
objective function. The algorithm begins by assigning a label
to each nodes initially. At every iteration, every node takes up
that label which occurs the most among its neighbours, thereby
using the network structure to identify labeling of the nodes.
The iterations continue until every node has the same label as
the majority of its neighbours.

We used the R implementation which allowed the provision
to initialize and fix the labels of some of the nodes (equivalent
to providing a training set). In our setting, the nodes represent
customers while edges represents similarity between them.
As described before, we use the binary correlations of the
voltage data as the similarity distance. However, using the
correlation matrix directly to generate the graph would result
in a completely connected graph between the nodes, thus being
of no help to the label propagation algorithm. Instead, we used
a threshold value to generate the unweighted graph. Between
every two nodes i, j ∈ C where C is the set of customers,
undirected edge Eij exists iff 1 + corrij ≥ η, where corrij
denotes the binary correlation of i & j as described above and
η is a numerical threshold for the circuit.

The next requirement is to determine η. Empirical ob-
servation has shown that a higher threshold produces better
accuracy for the learning approach. A benchmark plot is shown
in Fig. 3. Here, we used 25% of data as the training set
(fixed initial labels) for label propagation over each of the
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Fig. 3. Accuracy of label propagation over increasing threshold values

three circuits. The accuracy obtained for the different ranges
of the threshold is plotted for the three circuits. We see that
accuracy improves with increasing threshold. However, the
graph becomes disconnected at higher thresholds (e.g. 1.33 for
circuit 1) and label propagation cannot be used then. Therefore,
the threshold has to be determined so as to avoid making the
graph disconnected. We use a minimum spanning tree based
method to set the threshold that achieves this balance. Our
method of using label propagation is as follows:

1) Generate a completely connected, undirected graph G with
the set of customers as nodes N and and for every pair of
nodes i,j, edge Eij has weight wij = 1+ corrij.

2) Find the minimum spanning tree MST of graph G.
3) Assign threshold η = max(wij), Eij ∈MST .
4) ∀i, j ∈ N, set wij = 0 if wij < η or set wij = 1 otherwise.
5) Run the label propagation algorithm on the resultant undi-

rected, unweighted graph G.

D. K-MEANS

To represent unsupervised learning approach, we used the
widely-used and robust clustering algorithm K-MEANS [6] K-
MEANS algorithm finds a solution that minimizes the within-
cluster distances:

arg min
`1,...,`k

k∑
i=1

∑
xj∈`i

d(xj − Ci) (2)

where Ci is the centroid of observation vectors in cluster `i.

In all our experiments, the major goal is to infer the
phase for the customer meters. As K-MEANS in general is
an unsupervised technique, it would not be able to provide
phase labels to customers directly. To address this problem, we
use the phase connectivity present in the potentially inaccurate
data to initialize the centroids of K-MEANS. More precisely,
for each phase, we calculate the mean of the voltage vectors
corresponding to that phase from the inaccurate connectivity
present in the utility’s database, and initialize the centroid
(corresponding to that phase) by the mean vector.

IV. TRAINING ON PARTIAL CONNECTIVITY

In this section, we discuss the experiments which simulate
scenarios wherein accurate phase connectivity is available for
a subset of customers within a feeder circuit. As described in
Section I, such a situation arises when maintenance activities
in a part of the circuit may affect customer to phase mapping,
while the rest of the feeder is unaffected.

For each circuit, we conduct Monte Carlo experiments over
varying training size. In each run, a subset of the customers
are randomly selected and used as the training set, while the

rest of the customers form the test set. While this division is
self-explanatory for SVM, in the case of label propagation, this
means that the nodes (i.e. customers) belonging to the training
set are assigned fixed labels while those in the test set are not
given any labels. With both methods, the accuracy denotes the
proportion of customers in the test set that are assigned correct
labels (as compared with their true labels)1.

Fig. 4 plots the accuracy achieved by the two methods
with training size varying from 5% to 85% of the overall
dataset. The error bars show the standard deviation of results.
We see that both the methods perform very well across the
range of training sizes. Particularly, SVM method achieves
90% accuracy for 5% training size and that increases to almost
100% for 85% training size for two circuits. However, label
propagation performs close to 90% accuracy for 5% with only
marginal improvement with increasing training size.

The above experiments were conducted using the whole
dataset spanning two months. In the next set of experiments,
we study the sufficiency of data for such performance. For
this, we divide the dataset into batches spanning a few days
and conduct experiments for each batch just as before, and
average the results. For ease of presentation, Fig. 5 plots the
results for the two methods for the two extreme settings of
training sizes – 5% and 85%. We see that for all cases, and all
circuits, there is only a marginal improvement in performance
beyond a batch size of 4 days. Another finding is that label
propagation shows higher variance in its performance across
batches. Thus it is more sensitive to the size of the dataset
(due to missing data, some batches have lower number of data-
points than others for a given batchsize).

V. IMPROVING INACCURATE CONNECTIVITY

In this section, our experiments simulate the second major use
case – the existing phase connectivity in the utility’s database
is inaccurate due to undocumented changes, however, it is not
known as to which customers have inaccurate phase labels.
To recreate this situation, we introduce errors in the accurate
customer to phase mapping by randomly switching the phase
of a subset of customers. This partly accurate customer to
phase mapping covering all customers is then used to train
the 3 classifiers – SVM, Label propagation and K-MEANS.
Moreover, all customers are then considered in the test set
as well. Accuracy is computed based on the proportion of
customers assigned the correct phase when compared with
the true phase labels. For these experiments, we vary the
proportion of customers with false labels from 10% to 60%.

Fig. 6 shows the results of Monte Carlo experiments for the
three circuits and the three methods. The plots show that K-
MEANS is very robust and performs at the same level despite
increasing inaccuracy in the dataset. Label propagation also
demonstrates similar robustness but only up to 50% inaccurate
connectivity. Beyond that, its performance deteriorates rapidly
and it also shows higher variance. On the other hand, the
performance of SVM is strongly correlated with inaccuracy
and results in a gradual decline. It is interesting to see that the
three learning methods produce the same accuracy when 40%
of labels are inaccurate for all the three circuits.

1K-MEANS being an unsupervised approach, was not applied for this
completely supervised task.
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Fig. 6. Accuracy of rectifying a given labelling over increasing inaccuracy of the input phase labelling

Circuits DB Accuracy w.r.t
GT

SVM Label Propagation K-MEANS

Accuracy w.r.t GT Accuracy w.r.t DB Accuracy w.r.t GT Accuracy w.r.t DB Accuracy w.r.t GT Accuracy w.r.t DB
Circuit 1 86.33% 89.29% 88.72% 88.93% 87.45% 89.98% 88.27%
Circuit 2 59.61% 61.71% 70.79% 59.77% 72.92% 29.11% 55.10%
Circuit 3 72.89% 82.71% 80.13% 87.68% 76.12% 88.81% 74.19%

TABLE I. FIELD VALIDATION RESULTS – WITH RESPECT TO GROUND TRUTH (GT) AND DATABASE SOLUTION (DB)

VI. FIELD VALIDATION

In the previous section, we introduced random errors into the
accurate (field validated) phase connectivity to simulate erro-
neous scenarios. In this section, we conduct experiments using
the actual inaccurate customer to phase mapping obtained
from the utility’s database before field inspections. Therefore,
this setting gives further indication of the performance of the
methods in a realistic setting and demonstrates the ability of the
methods to correct an inaccurate customer to phase mapping.

As described in Section II-A, we use the database solution
that denotes the old customer to phase mapping available
in the utility’s database, to train the 3 classifiers – SVM,
label propagation and K-MEANS. We then compare the labels
generated by these methods against the field validated ground
truth. We conduct experiments using the dataset of discretized
binary voltage measurements as before. The computed phase
labels are then compared against the ground truth to determine
accuracy, as shown in table I. The computed labels are also
compared against the old database solution (DB). The accuracy
of the database solution with respect to ground truth is also
shown for reference.

It can be observed that for circuits 1 and 3, the accuracy of
label propagation and K-MEANS w.r.t ground truth are similar
to what was seen in Section V. However, the performance
of SVM varies significantly. Moreover, for circuit 2, all of

the three methods perform poorly when compared to their
respective simulation counterparts in Section V.

The discrepancy between the results of simulated inaccu-
rate input and real inaccurate input arise due to the kind of
inaccuracies present. In Section V, the noise or error in the
input labeling is uniform and independent across the phases
(the connectivity was made inaccurate by randomly switching
phases). However, in the database, the inaccuracies were gen-
erated because the wrong phase was reported at the transformer
level, so all the customers connected to the transformer were
assigned that wrong phase. Hence, the labeling noise present
in the database is biased and correlated, thus different to
simulated noise. The accuracies for circuits 1 and 3 is still
as good as simulated noise in case of label propagation and
K-MEANS because these two methods are robust towards noisy
input. SVM is less robust to biased noise because of its high
dependency on support vectors during the training phase [13].
Furthermore, the performance for circuit 2 is poor across the
three methods. On inspection, we found that in the database
solution, the class size ratios were highly skewed i.e., almost
all transformers (hence customers) connected to one of the
phases (as per ground truth) were being reported as connected
to another phase in the database. As there were very few
samples for one of the phases, none of the methods were able
to improve the connectivity.

Table I also shows the comparison of the labeling of



the methods with the old database solution (DB). It can be
observed that for all of the methods, the accuracy values
with respect to the database solution are consistent with the
accuracy of the database w.r.t ground truth. Therefore, the
methods can be used to provide a quality check of a circuit’s
existing customer to phase mapping. That is, given an existing
mapping for each circuit, the methods can compare and rank
circuits on the basis of the accuracy of their existing mapping.

VII. RELATED WORK

This section summarizes prior work on inferring customer
phase. Caird [14] discloses a system and method for phase
identification with suitably enhanced meters that can detect
phase based upon a unique signal injected into the phase line.
The disadvantage of signal injection methods or those that
rely on power-line communication (PLC) is that they require
enhanced hardware to transmit and receive signals at different
points of the grid, increasing capital and maintenance costs.
Our approach on the other hand simply relies on voltage
measurements already available from customers smart meters,
and requires no specialised hardware like repeaters.

Prior work [15], [16] has proposed optimization techniques
that can infer customer phase using a time series of customer
and feeder load (kWh) measurements. Voltage-based tech-
niques have two advantages over load-based techniques. First,
load-based optimization techniques are based on the principle
of conservation and therefore their accuracy may reduce in
the presence of non-AMI or unmetered loads. The voltage-
based approaches however are insensitive to unmetered loads
in the system. Second, the load-based optimization approaches
require both customer and feeder measurements while voltage-
based techniques proposed in this work need only customer
smart meter measurements.

In [17], authors analyse measurements from a low voltage
network consisting of a 3-phase distribution transformer and
its customers. Voltage measurements of individual customers
are matched with the per-phase measurements taken at the
distribution transformer to assign phase. Our prior work [18]
analyses voltage measurements from a microgrid to infer dif-
ferent connectivity relationships. In [5], we show that low volt-
age measurements from customer meters as well as medium
voltage measurements from feeders may be simultaneously
correlated to infer phase. On the other hand, our current work
relies solely on low voltage measurements from smart meters
and studies different machine learning methods to infer phase.

VIII. CONCLUSIONS

An accurate connectivity model is required in the planning,
operations, and maintenance of distribution networks. It en-
ables faster restoration, accurate and timely communication
with impacted customers during outages, and is also needed
to efficiently integrate distributed generation and behind the
meter resources. Automated inference of customer to phase
mapping using data already available from smart meters allows
utilities to infer, validate and maintain their phase connectivity
without resorting to expensive manual field inspections.

In this work, we study the performance of machine
learning approaches for this problem through support vector
machines, label propagation and k-means as representatives

of supervised, semi-supervised and unsupervised techniques.
We present experimental and field validation results based on
real smart meter measurements from a large North American
distribution network. Our analyses shows that SVM provides
the highest accuracy for settings where accurate phase connec-
tivity is known beforehand for a subset of customers, whereas
label propagation and k-means may be more robust to noisy
labels. All methods improved the accuracy of the existing
customer to phase mapping for two of the three feeder circuits
analysed. Future work will focus on studying machine learning
techniques particularly suitable for noisy labels for the setting
of inaccurate connectivity. Similarly, we also seek to focus on
developing supervised and semi-supervised techniques for in-
ferring customer-transformer connectivity and study the impact
of distributed generation on customer voltage measurements.
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