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ABSTRACT
Customers are affected by power outages due to supply short-
age, maintenance and other unexpected events. Utilities
are evaluated by the authorities on metrics such as SAIDI
and SAIFI that are based on the outages’ duration and fre-
quency. During outages, islanding is often used to supply
backup power to a subset of the load by using local energy
sources such as batteries or micro-generation. Due to the
limited capacity of secondary supply, Adaptive Dynamic Is-
landing is used to dynamically allocate the energy among
the customers during outages. Battery characteristics such
as lifetime and available capacity depend on the usage pat-
terns. Therefore, when battery is used as the secondary
source for islanding, it is important to schedule the supply
to satisfy the customer demand and improve reliability met-
rics while taking into account battery capacity and energy
costs. Towards this, we propose a method for optimally
scheduling supply from a shared battery among a set of cus-
tomers during Adaptive Dynamic Islanding. Additionally,
we also present a pricing mechanism to bill the customers
for their consumption during islanding based on their usage
patterns. This helps in avoiding penalizing customers for
the usage behaviour of others in the community using the
same shared battery. We show experimental results based
on real consumption data and battery specifications.
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1. INTRODUCTION
Electricity is one of the primary necessities in the modern
world. As countries extend the reach of electricity to pro-
vide access to all their citizens, the generation, transmission
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and distribution infrastructure is struggling to keep up. De-
spite the increase and upgradation of capacities, electricity
outages are still frequent in various parts of the world. Out-
ages occur due to several reasons such as systemic energy
shortfall, device failures, faults in the network, scheduled
maintenance and even natural events like storms or quakes
among others. Outages could be scheduled or sudden; also
outages can be of varying durations based on the underly-
ing causes. Both the scheduled and sudden outages can last
for several hours at a stretch until power is restored. In all
cases, the loss in supply is undesired and affects customer
productivity and comfort.

Electrical utilities are measured on several metrics by the
regulators including reliability. Important reliability metrics
are based on the duration and frequency of outages suffered
by the customers. Moreover, utilities in many developed
countries are moving towards performance based rate due to
pressure from electricity regulators [7]. Hence the reliability
metrics directly affect the revenues of utility companies.

Consequently, as utilities are under pressure to reduce in-
terruptions to the supply, they undertake several measures
such as Adaptive Dynamic Islanding during outages. Island-
ing is the method of isolating sections of the grid and sup-
plying power to them using local sources in the event of an
outage [3]. Especially for areas prone to outages, the ability
to island is of great benefit for providing backup power in
the event of loss. This helps in reducing the interruptions
and improving the metrics. During an outage affecting a sec-
tion of the service region of a utility, some areas within the
outaged section turn into islands of power – the customers
in those areas receive power through alternate sources such
as micro-turbine, storage, renewable energy, etc. For that
temporary duration, this can be considered equivalent to the
off-grid settings where a community is not connected to the
grid but is powered by its own local energy source.

As islanding uses local energy sources such as battery or
renewables which are limited in capacity; thus supplying en-
ergy requirements of all the customers is often not possible.
Adaptive Dynamic Islanding (ADI) is the advanced method
of islanding wherein the utility differentiates between the
loads of the customers and supplies the limited energy by
cycling it over the customers [12]. ADI uses the advanced
meter infrastructure at customer premises to turn-on and
turn-off power for each customer independently during an



outage. Consequently, a supply schedule is followed based
on the limited energy resource such as a battery for supply-
ing power to the customers. In this paper, we focus on such
ADI scenarios where a shared battery is used to supply power
to customers during an outage. In particular, we present a
mechanism for scheduling the supply of energy among the
set of customers in an optimal manner and also to price their
energy consumption based on the battery characteristics and
usage behaviour.

Scheduling and pricing the energy from a shared battery is
challenging because of the special characteristics of the bat-
tery technology such Lead-Acid or Lithium-Ion. In short,
batteries are expensive and come with a limited lifetime.
Furthermore, the ‘Rated Lifetime’ and ‘Rated Capacity’ of
a battery is specified by the manufacturers against a ‘Rated
Depth-of-Discharge (DoD)’ and a ‘Rated Discharge Rate’.
However, since the DoD and discharge rates experienced by
the battery depend on the actual usage (that is, the load be-
ing supplied), they vary significantly from the rated values.
In fact, DoD and discharge rate vary from one discharge cy-
cle to another based on the usage. The complexity lies in
the fact that the effect of DoD and discharge rate on the
battery lifetime and available capacity is non-linear.

When a battery is used as a shared energy source among
a set of customers during an outage, it is necessary to sched-
ule the supply to the customers in such a way as to satisfy
each of their demands as much as possible while taking into
account the affect of the discharge rate on the available ca-
pacity. Similarly, since DoD affects the deterioration in the
lifetime of the battery, the customers have to be billed not
just for their energy usage but also their contribution to the
loss in battery life.

Alternatively, customers can install and use their own in-
dividual batteries instead of using the shared resource. One
of the disadvantages of such an approach is that the cus-
tomers will have to size the battery based on their peak
demand although they might not always be using it at that
capacity. In the shared setting, the battery will be sized
based on aggregate peak which will be lower than sum of
individual peaks due to complementary demand patterns.
Moreover, the per kWh cost of a battery will be lower for
batteries of larger size – thus, a community-wide shared bat-
tery will have a lower per kWh cost. Nevertheless, in the
shared battery setting, it is important to have suitable pric-
ing mechanism such that customers do not have carry the
burden of the usage behaviour of others. At the same time,
the pricing mechanism should also be such that, typically, it
is more profitable to use the shared battery than purchase
individual batteries.

Given the above necessities, in this paper, we propose a
method for scheduling the supply of energy from a shared
battery to the customers during ADI. The aim of the sched-
ule is to achieve the following requirements – (i) satisfy a
specified minimum percentage of demand of all customers,
(ii) minimise the interruption duration or frequency at the
utility level and, (iii) ensure feasibility of supply from the
battery through control of the discharge rate and available
capacity. We also propose a pricing mechanism for billing
the customers for their battery usage based on their usage
behaviour. The design of the scheme ensures that customers
are not penalised for the inefficient usage patterns of oth-
ers in the group. We demonstrate the effectiveness of our
approaches through experimental evaluation based on real

consumption data of a large set of customers and battery
data from manufacturer’s specifications. In summary, the
contribution of this work is two-fold:

1. We are the first to propose a method for optimally
scheduling the supply of energy from a shared battery
resource to a set of customers based on historical con-
sumption patterns.

2. We propose a novel pricing mechanism for billing cus-
tomers using a shared battery resource that takes into
account the effect of the usage behaviour of the cus-
tomers on discharge rate and DoD in addition to the
energy consumed.

While the motivation behind our work lies in the settings en-
visaged in ADI, the approaches we propose here are applica-
ble to any scenario that involves a set of consumers seeking
energy from a shared battery resource for a given duration.
Thus, our work is equally applicable to both grid-tied and
off-grid microgrids containing batteries.

In the next section, we study the literature relevant to this
work. Following that, Section 3 provides a background on
ADI and battery characteristics. Next, Section 4 describes
our scheduling and pricing approach in detail. It is followed
by experimental evaluation of the approaches in Section 5.
Finally, Section 6 concludes the paper.

2. RELATED WORK
In this section, we provide a brief study of the literature
related to islanding, shared storage systems and batteries.

The process of adaptive islanding and using distributed
generation or local generation as backup source has been
widely studied (see [9, 15, 16] and the references therein).
In particular, authors in [9] describe a method for inten-
tional islanding to improve frequency and voltage stability
in distribution networks. Similar to our work, the focus of
this paper is also on reducing customer interruptions and
improving system reliability. However, they use local gener-
ators as backup source for islanded customers whereas our
work focuses on using battery as the backup source.

There is a large body of work on optimizing use of energy
storage systems in distribution networks with renewable en-
ergy sources. The authors in [10] focus on optimizing the
the battery life and storage capacity by minimizing charge-
discharge cycles. They use optimally-sized super capacitor
to reduce perturbation of discharge current. In our work,
we select loads to optimize the battery life. Bozchalui et
al. propose a framework for scheduling energy storage sys-
tems in the distribution system containing renewable energy
sources [4]. They focus on reducing imbalances at the sub-
station level with various objectives. They do not schedule
the demand or directly focus on reliability metrics. Simi-
larly, [2] propose an optimal framework for scheduling en-
ergy from community storage systems to the grid to take
advantage of fluctuating energy prices in the competitive
markets.

Moving towards storage systems, [13] focus on optimising
battery lifetime and cost of energy for consumers of a grid-
tied microgrid. Here, the purpose of the schedule is to choose
when to use energy from the grid directly and when to use
the battery (which is charged using renewables). Thus, it is
not applicable to outages or ADI.



Finally, [11] compares the benefits of using community-
shared battery versus individually-owned storage systems.
Their analysis reveals that there are considerable savings in
storage requirements in the community-shared case. This
arises mainly due to the diversity in consumption profiles of
the members. Thus, this work provides us with an impetus
to focus on the usage of shared storage systems during ADI.

3. BACKGROUND
In this section, we provide the background on electricity out-
ages suffered by utilities and their customers and describe
the relevant metrics used to measure them. This is followed
by describing the approach taken to provide power to cus-
tomers during such outages by using storage or other tech-
nologies. Next, we study the characteristics of the battery
technologies that can be used by utilities to provide backup
power to their customers during outages.

3.1 Electricity Outages
Electricity outages, both scheduled and unscheduled, occur
for several reasons. In several developing countries, there is
a severe energy and peak power shortage that leads utilities
to induce power outages. For example, in India, the en-
ergy deficit was 8.4% (7.5 GWh) and peak power shortage
was 7.9% (12.3 GW) in 2013 [6]. For the stable operation
of the electricity network, utilities resort to planned out-
ages during peak demand. Additionally, there are frequent
unplanned outages due to unexpected events. Even in de-
veloped countries outages often occur due to maintenance
issues and unexpected events. These lead to both scheduled
and sudden outages.

To measure the utility’s performance, there exist several
measures of reliability. The two most often used reliability
metrics are SAIDI and SAIFI.

• SAIDI: It stands for System Average Interruption Du-
ration Index representing the average duration of out-
age per each customer served by the utility. It is cal-
culated as:

SAIDI =

∑
i UiNi

NT
(1)

where Ni and Ui respectively denote the number of
customers and the annual outage time for location i,
and NT is the total number of customers of the utility.
SAIDI is usually measured in terms of minutes (or
hours) per customer.

• SAIFI: Standing for System Average Interruption Fre-
quency Index, SAIFI represents the average number of
interruptions experienced by the customers of the util-
ity. It is calculated as:

SAIFI =

∑
i λiNi

NT
(2)

where λi and Ni respectively denote the failure rate
and the number of customers for location i, and NT is
the total number of customers of the utility.

SAIDI and SAIFI are measured by regulatory authorities
to keep track of the service performance of utilities. For
example, for the year 2014, among the US based utilities,
the highest SAIDI was recorded by Coastal Electric Coop,
Inc at 7, 266 minutes per customer and the highest SAIFI

Figure 1: DoD versus battery lifetime

was recorded by Tallapoosa River Elec Coop Inc at 118.2
interruptions per customer in the year [17].

3.2 Adaptive Dynamic Islanding
During an outage, utilities have to supply power to critical
demands such as hospitals, police stations etc. Restoration
of power after an outage could take several hours since loca-
tion of a fault and repair of a fault can be time-consuming.
Typically utilities use backup power sources such as micro-
generation or batteries to supply energy to few customers
during an outage. Islanding is this process of supplying
power to a subset of customers in a utility service region dur-
ing an outage. An advanced method of islanding is known as
Adaptive Dynamic Islanding (ADI) [12]. ADI uses the ad-
vanced meter infrastructure at customer premises to turn-on
and turn-off power for each customer independently dur-
ing an outage. Using ADI, utilities can differentiate critical
loads such as hospitals, traffic controls and police stations
from non-critical loads, and supply power to critical loads.
Remaining energy is cycled for subset of non-critical loads.
As mentioned in Section 1, in this work we develop the
scheduling and pricing mechanisms for using battery stor-
age towards providing power in such ADI settings.

3.3 Battery Cost
Batteries are electro-chemical devices which convert chem-
ical energy to electrical energy or vice-versa by means of
controlled set of chemical reactions between a set of active
chemicals. Batteries are commonly used as a backup source
of power during outages. Use of utility scale batteries is gain-
ing prominence due to advances in battery technology and
reduction in battery prices [5]. Lithium-Ion and Lead-Acid
battery technologies are most widely used for applications
of back-up power.

Due to high manufacturing costs, limited lifetime, and
recycling costs, battery costs are still very high compared to
the cost of energy generation. The life of battery is affected
by ageing of the system and wear of the battery chemicals.
Battery ageing refers to reduction in life of battery due to
environmental exposure such as corrosion. Battery ageing
can be minimised by having a proper enclosure as well as
regular maintenance. In comparison, battery wear refers to
reduction of ability to store and dispatch energy. Battery
wear is a function of usage patterns of the battery. Two
important characteristics that affect batteries are Depth of
Discharge (DoD) and Discharge Rate [8]. In this paper, we
model battery costs as a function of these two parameters.



Figure 2: Discharge rate versus available capacity

3.3.1 Effect of Depth of Discharge (DoD)
Depth of Discharge (DoD) is defined as the amount of bat-
tery capacity that has been discharged, expressed as a per-
centage of maximum capacity of the battery. For example,
DoD of a fully charged battery is 0%. Batteries operated
upto DoD 80% are called deep discharge batteries.

Depth of discharge affects the cycle-life of a battery. Cycle-
life of battery is defined as number of charge-discharge cycles
that battery can experience before it stops operating at rated
specifications. Figure 1 shows a sample graph of dependency
of cycle-life on DoD [8]. Typically battery specifications give
rated cycle life for 80% DoD1. The battery manufacturers
provide cycle-life vs DoD curves such as given in Figure 1 in
the product technical specifications.

3.3.2 Effect of Discharge Rate
The discharge rate of a battery affects the effective energy
derived from the battery. Typically the battery specifica-
tions determine the effective capacity of a battery as a func-
tion of C-Rate. C-Rate is defined as the rate at which bat-
tery is discharged relative to its maximum capacity. For
example, 1C rate means the discharge current will exhaust
the entire battery capacity in one hour. Figure 2 is a sample
table derived from a battery specification giving the depen-
dency between discharge rate and effective capacity [8].

The relationship between discharge rate and available ca-
pacity is given by Peukart’s law [14] in the form of the equa-
tion given below:

Cp = Ik.t (3)

where Cp is the amp-hour capacity at 1A discharge rate, I
is the discharge rate in Amperes, t is the discharge time in
hours and k is the Peukert coefficient.

Battery lifetime, costs and columbic efficiency depends
on usage patterns of the battery; thus it is important to
consider these factors for optimal usage of battery during
outages and ADI. Since each customer’s usage patterns are
different, the contribution of each customer to battery wear
costs and energy costs also differ. It is important to price the
energy consumed from the battery in ADI fairly, without pe-
nalizing a customer who uses the battery optimally (within
rated specifications) as compared to a customer who uses the
battery beyond the rated specifications, contributing more
to the wear of the battery and wastage of energy.

4. SHARED STORAGE MECHANISM
1http://www.hoppecke.com/content/download/brochures/
rp/TechnicalDocumentation/Montagehandbuch verschl en.
pdf

In this section, we describe our mechanism of using shared
battery storage to supply to a set of customers that are either
affected by an outage or islanded for some other reasons.
Based on the background, we identify the following value
propositions that we seek to satisfy.

1. Performance Based Rating uses grid reliability met-
rics as one of the key parameters determining energy
prices. Hence these metrics directly affect utility rev-
enues. Our method focuses on improving grid relia-
bility metrics such as SAIDI and SAIFI during ADI
using batteries. Even in the case of ADI being adopted
by a community independently, minimising SAIDI and
SAIFI would constitute as the ambition for efficient
operation of the storage.

2. Fairness is an important criterion when sharing a lim-
ited resource. Utilities are legally obliged to serve their
customers fairly. A schedule can be considered fair if
all customers at least get a designated minimum per-
centage of their power requirements (such that no one
is drastically deprived compared to others). Our ap-
proach ensures fairness during schedule optimization
by using bounds derived from historical consumption
patterns.

3. Battery cost of large-scale lead-acid or lithium-ion bat-
teries are significant. Effective usage of stored energy is
of utmost importance. Our method ensures that bat-
tery is operated with a discharge profile that brings
about effective usage of the battery.

4. Pricing the use of the shared battery needs to be fair
given that the pattern of usage has a strong effect on
the battery lifetime. We propose a pricing mechanism
that ensures that individuals are not penalised by the
actions of others, at the same time, they pay the share
for their contribution to the energy cost and loss in
battery life.

The setting is formalised as follows: A given set of cus-
tomers (such as a community) are sharing a battery resource
for backup power for a given outage period. The outage pe-
riod consists of a known number of contiguous time slots.
The battery is assumed to be fully charged prior to the out-
age. At every time slot, the battery can either be steady
or discharging. A subset of customers (could be none) are
chosen for using the battery power for each time slot based
on the derived schedule.

4.1 Shared Storage Scheduling
We use linear optimisation formulation to obtain the cus-
tomer allocation schedule for ADI with the objective of min-
imizing system reliability indices such as SAIDI and SAIFI.

Let N be the set of customers and T be the set of contigu-
ous time slots (say hours) of outage duration. Let C be the
set of possible discharge profiles (schedule configurations) of
the battery. Each c ∈ C essentially denotes a battery con-
figuration, that is, the subset of time slots of T for which
the battery is kept on. Also, let E(c) be the effective energy
available in the battery for configuration c. E(c) is derived
based on the battery specifications data (as explained in Sec-
tion 3.3). For example, suppose T = {1, 2}, then C can be
{{1}, {2}, {1, 2}}; also suppose the battery offers an effective



capacity of 60 units when discharged at 1 time unit, and a
capacity of 100 units when discharged for 2 time units. Then
E({1}) = E({2}) = 60 and E({1, 2}) = 100.

The estimations of the demand requirements of each of the
customers for each of the time slots are available. These es-
timates can be derived based on the historical consumption
data of the customers. Then, ei,t denotes the estimated en-
ergy demand of customer i ∈ N at time slot t ∈ T . Finally,
γ represents the minimum percentage of any customer’s to-
tal demand during the outage period that the utility should
seek to satisfy during ADI. This can be set by the grid or
by utilities themselves (or even the community of customers
in case of self-installation). γ essentially acts as the fairness
metric.

We use two sets of indicator variables x and y in formu-
lating the linear program for minimization of SAIDI and
SAIFI. The first set of indicator variables x is defined for
every customer and every time slot: xi,t = 1 if consumer i is
served at time slot t, otherwise xi,t = 0. The indicator vari-
able y is defined for every configuration: yc = 1 if the battery
discharge profile c ∈ C is selected, otherwise yc = 0. Since
SAIDI and SAIFI are both important as metrics, we pro-
vide optimisation formulation for minimising each of them
separately. Of course, a utility can seek to obtain a balance
by optimising over a weighted combination of the two.

4.1.1 Minimising SAIDI

SAIDI can be minimised during an outage by maximising
the total duration of backup power being provided to the
customers under ADI. The following formulation seeks to
obtain the schedule that maximises the duration of supply to
the customers under the feasibility and fairness constraints.

maximise
x,y

∑
i∈N, t∈T

xi,t

subject to
∑
c∈C

yc = 1

xi,t ≤
∑
c:t∈c

yc, ∀i,∀t

∑
i∈N

xi,tei,t ≤
∑
c∈C

yc
E(c)

|c| , ∀t

∑
t∈T

xi,tei,t ≥
γ

100
·
∑
t∈T

ei,t, ∀i

(4)

The first constraint ensures that only one configuration
is selected by the optimisation, thus providing the battery
schedule. The second constraint guarantees that a customer
can receive energy in a time slot only if the battery is on
in that time slot for the chosen configuration. The third
constraint states the requirement that the total energy con-
sumed in time slot cannot exceed the energy available for
that time slot from the battery. Here, it is important to
note that we are stating the available energy as the total
energy available in the configuration divided by the number
of time slots contained in the configuration. Although, this
assumes a uniform rate of discharge across the time slots for
the optimisation purpose, the actual rate of discharge will
depend on the actual demand. This assumption is neces-
sary to obtain the value E(c), because available capacity is
dependent on the discharge rate (as studied in Section 3.3).
While the above constraints are designed to ensure feasibil-
ity of the obtained schedule, the last constraint is important

because it ensures fairness of the schedule. It states that
every customer should receive at least γ percentage of their
total energy requirements during the outage period.

4.1.2 Minimising SAIFI

Just like in the case of SAIDI, SAIFI can be minimised
during an outage by reducing the number of interruptions
to the customers under ADI. Here we use another set of
indicator variables z: zi,t = 1 if customer i experiences an
interruption at time t. Interruption is defined as the power
switching to the off state from an on state. Thus,

zi,t =

{
1 if xi,t−1 = 1 AND xi,t = 0

0 otherwise;
∀t = 2, 3...; i ∈ N

(5)
The following formulation seeks to obtain the schedule that
minimises the number of interruptions of supply while sat-
isfying the feasibility and fairness constraints.

minimise
x,y

∑
i∈N, t∈T

zi,t

subject to
∑
c∈C

yc = 1

xi,t ≤
∑
c:t∈c

yc, ∀i,∀t

∑
i∈N

xi,tei,t ≤
∑
c∈C

yc
E(c)

|c| , ∀t

∑
t∈T

xi,tei,t ≥
γ

100
·
∑
t∈T

ei,t, ∀i

zi,t ≥ xi,(t−1) − xi,t, ∀i,∀t ≥ 1

zi,1 ≥ 1− xi,1, ∀i

(6)

The objective function captures the requirement to min-
imise the total number of interruptions across the customers
over the whole outage period. The rest of the formulation
is similar to Eq. 4 except for two additional constraints.
The fifth constraint provides the definition of an interrup-
tion, that is, customer i suffers an interruption if served with
power for time slot t− 1 but not served for time slot t. The
last constraint represents the same but for the special case
of t = 1, the beginning of the outage period.

With the above formulation for SAIDI or SAIFI a sched-
ule is obtained prior to the outage period for the customer
consumptions and battery supply. The schedule is repre-
sented by the values (0 or 1) of all the xi,ts and ycs. Based
on the derived schedule, energy is provided from the battery
to the selected set of customers at every time slot.

However, as the schedule is derived based on the typical
demand pattern of the customers, the actual consumption
realised during the outage might vary. This can result in
slightly different levels of energy available in the battery and
different levels of demands of the customers being satisfied
from what was assumed for the schedule. This difference is
a result of the demand forecast error of the customers which
is beyond the scope of this paper. Nevertheless, when the
error is low, the minor differences tend to get ironed out
themselves. In cases when the forecast error is high, the
above optimisation can be re-computed at the end of every
time slot to obtain a revised schedule for the rest of the
outage period. This re-optimisation is based on the latest
availability of energy in the battery and the updated demand



requirements. Therefore, revising the schedule at every time
step will ensure that the best possible performance metrics
are maintained even in the face of uncertain demand of the
customers.

Next, we present our method for pricing the energy supply
based on the usage behaviour of the customers.

4.2 Usage-Based Pricing
Our pricing method calculates the total wear cost of the
battery and the cost of the energy depleted in the battery
for the discharge cycle (which corresponds to the outage pe-
riod). We calculate these using the data given in the product
specifications of the battery and the physical model of the
battery. This cost amount is then apportioned to the cus-
tomers based on their individual consumption behaviour in
that cycle using the consumption data.

The challenge in designing a pricing scheme lies in the fact
that while the total cost at the community level will depend
on the overall consumption pattern such as the DoD reached
and discharge rate of the shared battery, a customer should
be charged only as per her consumption pattern. At the
same time, the cost of energy supplied to the customer using
shared battery should be less than or equal to having her
own battery. Otherwise, a customer will not be motivated
to use the shared battery; she may install her own battery.
We devise a pricing mechanism which essentially provides
incentive to the customer to use the shared battery and also
bills the customer for only her contribution to battery wear
and energy consumption.

The intuition behind our method is as follows. We calcu-
late every customer’s incurred cost of energy consumption
as if she had her own battery with specification similar to
that of shared battery, but sized with a capacity to sup-
ply her peak historical consumption. Then, we apportion
the total cost of energy among all the supplied customers in
proportion to what would have been the incurred cost if cus-
tomer had her own battery. As the per kWh capex cost of a
shared battery tends to be lower than an individual smaller
battery, the cost for each customer will also end up being
lower compared to having her own battery.

Let KR, DR and LR be the rated capacity, rated DoD
and rated life cycles of the shared battery respectively. If
B is the cost of the battery, then the rated wear cost per
cycle WR = B

LR
. As the battery is used for the total outage

period of T time slots, that can be considered as one dis-
charge cycle for the battery. If the actual DoD reached at
the end of the cycle is DT , Pd(DT ) is defined as the DoD
cost factor, which adjusts the total wear cost of the battery
for the deviation from rated DoD. Pd is obtained from the
battery specifications such as given in Figure 1. Similarly,
if IT is the actual rate of discharge for the cycle, Pr(IT )
gives the discharge rate cost factor, which adjusts the total
energy cost from the battery for the deviation of operation
from rated discharge rate. Pr is a function derived from
Peukert’s law and battery specifications as seen in Figure 2
(see Section 3.3). Hence, the actual wear cost for the cycle
T is:

W b = Pd(DT )WR (7)

Thus, W b constitutes the actual battery cost for the dis-
charge cycle. Let S be the cost per kWh of the energy used
to charge the battery, then the total energy cost for the cycle

Algorithm 1: Greedy algorithm for minimizing SAIDI

1: Suppose battery with capacity E is discharged at uniform
rate for the entire set T of the outage time slots.

2: Energy available for any time slot t ∈ T is Et = E
|T | .

3: for every time slot t ∈ T do
4: Sort the customers in ascending order based on their

energy requirements ei,t for time slot t.
5: Satisfy the demand request of the maximal set A of

customers (A ⊆ N) selected in above order such that∑
i∈A ei,t ≤ Et.

6: end for

is:

W s = DTKRS (8)

W b and W s together constitute the total battery usage
cost for the discharge cycle. As discussed above, to calculate
the battery wear cost and energy cost of a given customer,
we assume that the customer has used her own battery.

We begin with the effective energy cost computation. For
a given customer i ∈ N , let qi,t be the actual energy con-
sumed and Iti be the measured discharge rate of customer i
during time slot t. Then the total effective energy consumed
over the outage period T is:

ws
i =

∑
t∈T

Pr(Iti )qi,t (9)

Normalising with the overall energy consumption, we ob-
tain the effective energy cost for customer i as:

w̃s
i =

ws
i∑

j∈N ws
j

W s (10)

Now, moving onto the battery wear cost computation, let
the capacity and cost of the battery of customer i, sized
based on her historical peak consumption, be ki and bi re-
spectively. Since LR is the rated number of life cycles, the
rated wear cost for customer i is wi = bi

LR
.

Given the energy consumption ws
i , the equivalent DoD of

customer i is given as:

DT
i =

ws
i

ki
(11)

With this DoD, the wear cost of customer i’s battery for
the cycle T is:

wb
i = Pd(DT

i )wi (12)

The actual battery wear cost attributed to i for the cycle
will be an equivalent proportion of the shared wear cost
obtained in Eq. 7 as follows:

w̃b
i =

wb
i∑

j∈N wb
j

W b (13)

Finally, the total cost of battery usage for customer i for
outage period T is obtained by adding up the contributing
energy cost and wear cost.

wT
i = w̃s

i + w̃b
i (14)

In the next section, we conduct experiments to understand
the performance of the scheduling and pricing approaches.



Figure 3: Discharge Rate vs Effective Capacity for
Sample Battery

Algorithm 2: Greedy with Fairness algorithm for min-
imizing SAIDI

1: Suppose battery with capacity E is discharged at uniform
rate for the entire set T of the outage time slots.

2: Energy available for any time slot t ∈ T is Et = E
|T | .

3: Set unsatisfied customer set Ñ = N .
4: for every time slot t ∈ T do
5: Sort the customers in ascending order based on their

energy requirements ei,t for time slot t.

6: if Ñ = ∅ then
7: set X = N
8: else
9: set X = Ñ .

10: end if
11: Satisfy the demand request of the maximal set A of

customers (A ⊆ X ) selected in above order such that∑
i∈A ei,t ≤ Et.

12: If any customer i ∈ Ñ has γ% of its total energy
requirement satisfied already, then remove i from Ñ .

13: end for

5. EXPERIMENTAL EVALUATION
In this section, we present simulation results to evaluate
the optimisation approach and to demonstrate the working
of our pricing scheme. We use Irish CER dataset, which
contains energy consumption measurements of around 5,000
consumers over 1.5 years2. The measurements started in
July 2009 and ended in December 2010, and recorded en-
ergy consumption in kWh every 30 minutes. We choose
residential consumers that belong to the control group and
have no missing values. This results in the selection of 782
consumers; we use this data at hourly resolution.

For every simulation run, we randomly chose a set of 30
customers from among the total 782 customers. To estimate
the demand requirements, we assume availability of past 30
days data. This period of 30 days is also chosen from among
the 18 months for each selected customer.

We use the average consumption of a customer in the time
slots pertaining to the outage period for the 30 historical
days as a forecast of the energy consumption pattern of that
customer during the outage period. This demand pattern

2Electricity customer behaviour trial. The Commission for
Energy Regulation (CER), 2012

Figure 4: SAIDI minimisation

Figure 5: SAIDI minimisation: Number of cus-
tomers not receiving minimum share of energy (LP
method is not plotted because all customers receive
minimum share by design).

later forms the basis for generating the supply schedule using
optimisation or greedy (described below) approaches.

For the simulations, we assume a shared battery with ca-
pacity of 50 kWh at the discharge rate of 10 hours. The
cycle life of battery is 2000 when operated at DoD of 80%.
The capacities at various discharge rates are obtained from
curve shown in Fig 3.

For each simulation run, the selected 30 customers (with
demand patterns given from 30 days of data) are assumed to
suffer an outage of 10 hours duration. The shared battery is
used to supply power to them based on some schedule (ob-
tained via optimisation or naive approaches such as greedy
as described below). The actual demand of the customers
during that 10 hours is given by the actual consumption of
each customer from a randomly selected day. Thus, the sim-
ulation method does not make any assumptions about the
type of customers, demand patterns, customer requirements
or actual consumption of customers. Instead, it derives all
these values by sampling from a real dataset. Next, we first
describe our experiments for the scheduling mechanism be-
fore moving onto the pricing mechanism.



Algorithm 3: Greedy algorithm for minimizing SAIFI

1: Suppose battery with capacity E is discharged at uniform
rate for the entire set T of the outage time slots.

2: Total energy available for any time slot t ∈ T is Et = E
|T | .

3: Sort the customers in ascending order based on their
total energy requirements

∑
t∈T ei,t.

4: Let Ẽt denote the available capacity in time slot t;
initialize Ẽt = Et.

5: for every customer i chosen in the above order do
6: Find the first time slot t where Ẽt − ei,t ≥ 0 (where i’s

demand can be satisfied based on available battery
capacity).

7: while Ẽt − ei,t ≥ 0 AND t ∈ T do
8: Satisfy the demand request of customer i at t.
9: Reduce available capacity: Ẽt = Ẽt − ei,t.

10: t = t+ 1.
11: end while
12: end for

Algorithm 4: Greedy with Fairness algorithm for min-
imizing SAIFI

1: Suppose battery with capacity E is discharged at uniform
rate for the entire set T of the outage time slots.

2: Total energy available for any time slot t ∈ T is Et = E
|T | .

3: Sort the customers in ascending order based on their
total energy requirements

∑
t∈T ei,t.

4: Let Ẽt denote the available capacity in time slot t;
initialize Ẽt = Et.

5: Set unsatisfied customer set Ñ = N .
6: for every customer i ∈ Ñ chosen in the above order do
7: t=1.
8: repeat
9: if Ẽt − ei,t ≥ 0 then

10: Satisfy the demand request of customer i at
time slot t.

11: Reduce available capacity: Ẽt = Ẽt − ei,t.
12: end if
13: t = t+ 1.
14: until customer i has at least γ% of its total energy

requirement satisfied
15: Remove i from Ñ .
16: end for

5.1 Scheduling
In order to compare the performance of our optimisation
approach, we designed two other scheduling methods – (i)
Greedy and (ii) Greedy with Fairness. Broadly, Greedy
refers to the approach that blindly attempts to minimise
the metric (either SAIDI or SAIFI) based on battery ca-
pacity with no regard for allocating a minimum share of
energy to all customers. In contrast, Greedy with Fairness
refers to the approach that gives priority to fairness (that
is, every customer should receive at least γ percentage of
their required demand during the outage period) and then
generates the schedule in a greedy fashion. Therefore, for
the sake of comparison, one can consider the Greedy and
Greedy with Fairness approaches as the upper and lower
bounds on performance respectively. The pseudocodes of
Greedy and Greedy with Fairness algorithms are presented
in Algorithm 1, Algorithm 2 respectively for SAIDI minimi-
sation. Similarly, Algorithm 3 and Algorithm 4 provide the
pseudocodes for SAIFI minimisation. For ease, we call our
optimisation based approach as the LP scheduling method.
IBM ILOG CPLEX Optimizer [1] was used to solve the

Figure 6: SAIDI minimisation: Number of LP runs
with feasible solutions

Figure 7: SAIFI minimisation

integer linear programs. Cplex uses either primal or dual
variants of the simplex method or the barrier interior point
method to solve integer/linear programming problems.

Moving onto the results, Figure 4 shows the performance
of the three approaches for minimising SAIDI. We con-
ducted experiments by varying the fairness parameter γ from
0 to 12.5%. The results shown here are the average over 50
simulation runs for each data point (have plotted the mean
and standard deviation). Since there are 30 customers un-
dergoing an outage of 10 hours in each run, the maximum
SAIDI possible is 300 hours. The x-axis denotes the fairness
parameter γ from 0 (no minimum requirement) to 12.5% of
energy requirement while y-axis gives the resultant SAIDI
values (lower is better). We see that when γ = 0, all three
methods converge at around 200. But with increasing γ,
while Greedy remains around 200, Greedy with Fairness
shoots upto 260. For γ ≥ 7.5%, Greedy with Fairness be-
gins to fall slowly, but that coincides with it being unable to
satisfy the minimum requirement of all customers (as seen
later). In contrast, our method LP rises in a much more
gradual fashion to around 215. The error bars of LP and



Figure 8: SAIFI minimisation: Number of cus-
tomers not receiving minimum share of energy (LP
method is not plotted because all customers receive
minimum share by design).

Figure 9: SAIFI minimisation: Number of LP runs
with feasible solutions

Greedy overlap until γ = 10% which shows that in some
cases, the performance of LP is equivalent to Greedy. This
is especially notable because LP follows the fairness require-
ments while Greedy doesn’t. This difference is further high-
lighted in Figure 5. Here, for each γ value, we plot the
number of customers out of the total 30 who did not even
receive the minimum percentage of energy as specified by γ.
The values shown here are the mean over 50 runs. γ = 0 is
the trivial case. But for higher values of γ, we find that 13
to 16 customers do not receive the minimum energy require-
ment; thus approximately 30-50% of the customers receive
less than the minimum energy requirement in Greedy. We
also note that for γ ≥ 7.5%, even Greedy with Fairness
method is unable to satisfy all customers. This shows that
a greedy-based scheduling approach does not have the look
ahead to determine which is the best time slot to serve a
customer. Hence, a customer might be put off for a later
time slot, but satisfying her requirement in the later time

Figure 10: Deviation from rated DoD of individual
customer batteries

slot might not be enough to provide enough energy over
the outage period. LP by definition satisfies all customers.
However, in some cases, LP fails to find a feasible solution.
Figure 6 shows the ratio of runs that had a feasible solution
through LP for different values of γ. For lower values, all
runs result in a feasible solution, but for higher values, the
number of runs with no solution keep rising. For γ = 15%
and beyond, feasible solutions become hard to find. There-
fore, we limited our experiments to γ = 12.5% and all the
results presented earlier were averaged only for feasible runs.

We conducted the same set of experiments for SAIFI min-
imisation. Figure 7 shows the obtained SAIFI values for the
three methods. The lower the SAIFI values, the better it
is in terms of reliability. Here, the maximum possible value
is 150. For all values of γ, the Greedy method remains sta-
ble between 20–25 because it ignores the fairness constraint.
However, we see that Greedy with Fairness rises as high
as 50 for γ = 2.5% to 5%, while LP rises gradually with in-
creasing γ. LP and Greedy with Fairness converge to similar
values of 40–42 for γ = 12.5%. This is because Greedy with
Fairness improves SAIFI for γ ≥ 7.5% as it correspondingly
begins to fail in satisfying the fairness requirement of all cus-
tomers. This can be seen in Figure 8. Greedy with Fairness
left 1 customer unsatisfied at γ = 7.5% and 5 customers un-
satisfied at γ = 12.5%. The Greedy method has left around
half or more of all customers unsatisfied for all values of γ.
LP, however, ensures minimum energy supply to all the cus-
tomers. Finally, Figure 9 shows the ratio of runs that result
in a feasible solution for LP with increasing values of γ. The
trend seen here is similar to that of SAIDI.

5.2 Pricing
We conducted a set of experiments to examine our pricing
mechanism. We use the same instances of dataset selected
for the scheduling experiments above. For every simulation
run, 30 customers are randomly selected from the dataset,
and a 30 day period is also randomly chosen to act as their
historical consumption data. Particularly, for the pricing
experiments, we also use this historical consumption data of
each customer to derive the size of the hypothetical individ-
ual batteries of each customer. For these experiments, we
set the battery price at USD 330 per kWh. The rated DoD



Figure 11: Deviation from rated discharge rates of
individual batteries for each customer

Figure 12: % Difference in cost of energy between
usage-based pricing and conventional pricing

was taken as 80%, and rated discharge rate set to 10 hours
(equivalent to the outage period). Energy cost for battery
charging is based on solar power source and set at 12.5 cents
per kWh. All these values are taken from the latest U.S. En-
ergy Information Administration’s annual report [18].

The first set of results highlight the need for a usage-based
pricing. For a selected set of 30 customers, Figure 10 shows
a boxplot of the deviation of the DoD from the rated DoD
of the batteries assuming that customers consumed energy
from their own individual hypothetical batteries. The y-axis
denotes the ratio of the actual DoD versus rated DoD. The
boxplot is generated over the consumption pattern during
the outage from the period of 30 days and shows distribu-
tion across the four quartiles. Essentially, the figure shows
the variation of the effect on DoD of the individual batteries
across the customers. We see that not only does the me-
dian vary significantly across the customers, even the ranges
of their 2nd and 3rd quartiles show significant differences.
While for around half of the customers, the 3rd quartile ends
around 0.5, for the rest it reaches upto 0.8. Similarly, Fig-
ure 11 shows the boxplot for discharge rate. Here again, the

same trend is seen – there is a lot of variation across the
customers in terms of their discharge rates. These two plots
together underline the need for usage-based pricing. Dif-
ferent customers withdraw energy from battery in different
distributions of DoD and discharge rates if they had their
own individual batteries. Thus, when sharing a battery, the
customers need to be priced based on their usage-pattern.

Conventional pricing schemes bill the customers solely
based on their proportion of the total energy consumption.
As a result, they assume the same price for all customers;
this doesn’t truly reflect the effect each customer has on the
battery capacity and lifetime. In contrast, our usage-based
pricing scheme denotes a customised price for each customer
based on their usage patterns. Figure 12 demonstrates an in-
stance showing the percentage difference between the costs
paid by customers using our usage-based pricing and con-
ventional pricing. Here, conventional pricing is based on
calculating total shared battery cost (both battery wear and
energy cost) for the outage period and dividing it in propor-
tion of energy consumed (simply as measured by the smart
meter) by each customer. The plot shows that the difference
in costs using the two pricing schemes ranges from +10% to
-15%. Therefore, the cost charged per customer using usage-
based pricing varies significantly from the conventional pric-
ing method. However, the variation is still reasonable and
hence understandable to customers.

6. CONCLUSIONS
The adverse effects of power outages can be reduced by
utilities by employing ADI, wherein isolated areas receive
backup power through local energy sources such as a stor-
age or micro-generation. In this paper, we provide support
for the functioning of ADI based on battery resources. Par-
ticularly, given the demand patterns of the customers and
battery capacity, we devise a method for optimally schedul-
ing energy supply from the battery during an outage. The
optimal schedule ensures that all customers receive a de-
fined minimum percentage of their energy requirement while
also attempting to minimise the reliability metrics SAIDI or
SAIFI. We have also presented a usage-based pricing mech-
anism to enable billing the customers for their battery us-
age during the outage. The pricing mechanism ensures that
customers pay for their effect on the battery lifetime and
capacity in addition to their actual energy consumption.

We conducted experiments based on the consumption data
from Irish CER dataset and actual battery characteristics.
Our simulations showed that the linear optimisation based
schedule is able to improve SAIDI or SAIFI compared to the
equivalent greedy schedule (with fairness constraint). The
simulations also showed that our usage-based pricing mecha-
nism is necessary and is able to capture the varying effects of
customers on the lifetime and capacity of the shared battery.

For future work, we would like to focus on ADI scenarios
that involve renewable generation in addition to batteries.
Particularly, we would like to develop techniques for opti-
mising battery life when multiple customers with renewable
energy sources are charging the shared battery. Another
stream of work will focus on modelling and optimizing sched-
ule for more complex battery technologies such as redox flow
batteries. On the pricing front, we would like to develop
suitable battery-state based payment schemes for these cus-
tomers supplying energy. Finally, we would like to bring in
game-theoretic guarantees for the pricing mechanisms.
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