
UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

Decentralised Structural Adaptation

for Agent Organisations

by Ramachandra Kota

Supervisors: Professor Nicholas R. Jennings and Dr. Nicholas Gibbins

Examiner: Dr. Enrico H. Gerding

A mini-thesis submitted for transfer from MPhil to PhD

February 25, 2008

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:rck05r@ecs.soton.ac.uk

ABSTRACT

Autonomic systems, capable of self-management, are being advocated as a solution to

the problem of maintaining modern, large, complex computing systems. Given this,

we believe self-organising multi-agent systems provide a convenient paradigm to de-

velop these autonomic systems because such self-organising systems can arrange and

re-arrange their structure autonomously, without any external control, in order to adapt

to changing requirements and environmental conditions. Furthermore, such systems

need to be decentralised, so that they are robust against failures; again, this character-

istic fits with the multi-agent paradigm. With this motivation, this report explores the

area of self-organisation in agent systems, and particularly focuses on the decentralised

structural adaptation of agent organisations.

In more detail, self-organisation has been generated in agent systems using various ap-

proaches like stigmergy, reinforcement mechanisms, cooperative actions of agents and

reward based mechanisms for selfish agents. However, none of these are directly ap-

plicable to agent organisations because they cannot be incorporated into deliberative

agents with fixed properties, working towards organisational goals. Here, we particu-

larly focus on such problem solving agent organisations because they provide a suitable

representation for autonomic systems. Against this background, we investigate and de-

velop mechanisms to incorporate decentralised structural adaptation in organisations

that seek to improve their performance.

More specifically still, we provide a simple model for representing problem solving agent

organisations and an evaluation mechanism to determine the performance of the or-

ganisation for any given set of tasks. This serves as the framework within which we

investigate approaches for developing reorganisation. Furthermore, we present a struc-

tural adaptation method that enables the agents to modify the organisational structure

based on their history of interactions with other agents, in order to improve the perfor-

mance of the organisation. Finally, our empirical evaluation shows that our method is

successful in improving the organisation performance and is comparable to that managed

by an external infinitely resourceful central agent.

Contents

1 Introduction 1

1.1 Research Objectives . 3

1.2 Report Structure . 4

2 Related Work 6

2.1 Modelling of Agent Organisations . 6

2.1.1 Modelling Tasks . 7

2.1.2 Modelling Organisational Characteristics 8

2.1.3 Modelling Agents . 12

2.1.4 Evaluating an Organisation’s Effectiveness 13

2.2 Self-Organisation in Multi-Agent Systems 14

2.2.1 The Basics . 15

2.2.2 Mechanisms of Self-Organisation 16

2.2.3 Examples of Self-Organisation in MAS 18

2.3 Summary . 24

3 Modelling Agent Organisations 25

3.1 Task Representation . 26

3.1.1 Example . 27

3.2 Organisation Representation . 28

3.2.1 Organisation Structure . 30

3.2.2 Agent Decision Mechanism . 34

3.3 Organisation Performance Evaluation . 37

3.3.1 Example . 40

3.4 Summary . 43

4 Decentralised Structural Adaptation 44

4.1 Reorganisation Methods . 44

4.1.1 Changing the Set of Agents . 45

4.1.2 Changing the Properties of the Agents 45

4.1.3 Changing the Structure of the Organisation 46

4.2 Our Reorganisation Method . 48

4.2.1 Constraints on the Model . 48

4.2.2 Our Reorganisation Approach . 49

4.2.3 Value Function Calculation . 52

4.2.4 Example . 58

ii

CONTENTS iii

4.3 Summary . 61

5 Experiments and Results 62

5.1 Experimental Design . 62

5.1.1 Simulation Parameters . 64

5.1.2 Hypotheses and Experiments . 65

5.2 Results . 68

5.3 Summary . 78

6 Conclusions and Future Work 80

6.1 Future Work . 81

6.1.1 Task 1: Efficient Structural Adaptation 82

6.1.2 Task 2: Structural Adaptation in Dynamic Organisations 82

6.1.3 Task 3: Multi-step Structural Adaptation 83

A Glossary 85

Bibliography 90

List of Figures

3.1 Map of the cities, their counties and the possible route 27

3.2 Representation of an example task . 27

3.3 An example organisation structure . 32

3.4 An example organisation graph . 33

3.5 Distribution of service instances of the task in Fig 3.2 across the agents . 37

3.6 Assignment of service instances among the agents 40

3.7 Another organisation and the task allocations 42

4.1 Organisation before adaptation . 46

4.2 Organisation after adaptation . 47

4.3 State transition diagram . 52

4.4 Allocation and execution of the service instances by the agents 59

4.5 Organisation structure after ax had reorganised 61

5.1 Average cost and benefit as similarity between agents increases for organ-
isations facing highly similar 100 tasks . 69

5.2 Average cost and benefit as similarity between agents increases for organ-
isations facing dissimilar 100 tasks . 70

5.3 Average cost and benefit as similarity between tasks decreases for organ-
isations with unique agents facing 100 tasks 71

5.4 Average cost and benefit as similarity between tasks decreases for organ-
isations with highly similar agents facing 100 tasks 72

5.5 Fig 5.3(b) with the full y range . 73

5.6 Average cost and benefit as similarity between agents increases for organ-
isations facing highly similar 200 tasks . 74

5.7 Average cost and benefit as similarity between agents increases for organ-
isations facing dissimilar 200 tasks . 75

5.8 Average cost and benefit as similarity between tasks decreases for organ-
isations with unique agents facing 200 tasks 76

5.9 Average cost and benefit as similarity between tasks decreases for organ-
isations with highly similar agents facing 200 tasks 77

6.1 Time line for future work . 84

iv

List of Tables

4.1 Attribute functions for the reorganisation actions 55

5.1 Values of the simulation parameters . 66

v

List of Algorithms

1 Assigned (sij): assignment of a service instance sij by agent ax 35

2 Process (sij): processing of a service instance sij by agent ax prior to its

execution . 36

vi

Chapter 1

Introduction

As computing systems get ever larger and more complex, it is becoming correspondingly

harder to maintain them due to their increasing size and the interconnectedness of

their numerous components. Given this fact, several researchers suggest tackling this

problem by making them autonomic, so that they manage themselves (Kephart and

Chess, 2003; Mainsah, 2002). In more detail, autonomic systems exhibit the property

of self-management which involves autonomously adjusting their operations according

to changing conditions. Also, these autonomic systems are expected to be decentralised

so that they are robust without any single point of failure. Against this background,

Tesauro et al. (2004) argue that such systems can naturally be developed by adopting a

multi-agent systems approach as agents are autonomous and provide a suitable paradigm

for developing decentralised systems. This, in turn, leads to the area of developing multi-

agent systems that exhibit self-management. Now, the area of research that deals with

self-management in agent systems is self-organisation, the mechanism or the process

enabling the system to change its organisation without explicit external command during

its execution time (Di Marzo Serugendo et al., 2005b). Thus, self-organisation can

consist of either forming an organisation from disordered entities or reorganising an

existing organisation, similar to maintaining computing systems. Therefore, to further

aid the development of autonomic systems, our work explores the area of self-organisation

in agent systems.

In more detail, self-organisation can be generated in multi-agent systems in several ways,

as demonstrated by Di Marzo Serugendo et al. (2006) and Bernon et al. (2006). For

example, self-organisation may emerge from stigmergic or reinforcement mechanisms in

agents (Mano et al., 2006) or can arise from the locally cooperative actions of the agents

(Kamboj and Decker, 2006; Capera et al., 2003a). Even virtual organisations (Norman

et al., 2004) can be considered to be an example of self organisation among agents acting

in a competitive scenario as the agents autonomously organise and reorganise themselves

1

Chapter 1 Introduction 2

without any external intervention. However, most of the work on self-organisation in

agents deals with multi-agent systems that do not have any organisation defined ex-

plicitly; the social interactions of the agents are not guided by definite regulations. We

require that our design of agent systems can be mapped onto computing systems that

perform tasks, so that our research on self-organising agents is useful for the develop-

ment of autonomic systems which are composed of such computing systems. To this end,

we focus specifically on developing self-organisation techniques for multi agent systems

that act as a problem-solving organisation (organisations that receive inputs, perform

tasks and return results)1. Our study of the various self-organisation mechanisms reveals

that most of them are not applicable to an explicitly modelled agent organisation be-

cause they cannot be incorporated into agents that are working towards organisational

goals (see Section 2.2.3 for more details). The few self-organisation mechanisms that

do consider agent organisations are centralised in nature, thereby not addressing the

requirement for decentralisation. A few other self-organisation techniques that can be

employed in agent organisations work by modifying the agents themselves. However,

such an approach is not viable for developing autonomic systems as changing the inter-

nal configurations of the computing systems is not always possible. Moreover, we also

seek to ensure that our methods are maximally applicable.

Against this background, we seek to develop a decentralised reorganisation method that

can be employed by the agents in an organisation to either maintain or improve the

performance of that organisation. Following the self-organisation principles, the method

should be a continuous process that is followed by all the agents utilising only their local

information for the benefit of the organisation as a whole. Furthermore, we attempt

to develop adaptation techniques that can be applied to organisations without having

to change the agents or their internal characteristics; we are primarily interested in

reorganisation based on the structural adaptation of the organisation. Thus, our reor-

ganisation mechanism will serve as a self-management tool similar to those visualised in

autonomic systems. However, before undertaking this task, two preliminary issues need

to be resolved — we need to have a simple but explicit model of a problem-solving agent

organisation that can act as the platform on which to found our structural adaptation

mechanism, and we also need an evaluation procedure that measures the performance

of the organisation thereby enabling us to verify the effectiveness of the resultant adap-

tation. We further elucidate our objectives in the next section.

1This is in contrast to organisations which just provide guidelines to be obeyed by agents participating
in the organisation to achieve their individual goals (Sierra et al., 2004). These organisations do not
have any specific goals to achieve but only act as regulating authorities and so are not relevant in this
context.

Chapter 1 Introduction 3

1.1 Research Objectives

We specify the objectives of this research in terms of the following requirements:

1. Formulate a model of problem-solving agent organisations

The purpose of the organisation model is to serve as a framework on which the

adaptation mechanism can be developed. For this reason, we do not wish to de-

velop a highly sophisticated model since this is not our main focus. However, it

needs to have the general organisational characteristics like members, relationships

and authority structures, all of which can be modelled in a straightforward man-

ner at this time. To further focus our research, we seek to develop a model for

problem-solving agent organisations. By this, we refer to those agent organisations

that receive inputs (as tasks), perform actions on the basis of these inputs (task

processing or execution) and return results, thereby solving a problem.

2. Develop an evaluation mechanism that measures the performance of an

agent organisation.

The performance of an organisation is measured in terms of how well it performs its

tasks. Towards this end, we aim to develop mathematical functions that calculate

the efficiency of an organisation executing a given set of tasks. Such an evalua-

tion mechanism is necessary because it will act as a criterion for determining the

effectiveness of the adaptation methods.

3. Develop a completely decentralised structural adaptation method that

can be employed by the agents in a problem-solving agent organisation

to improve the performance of the organisation as a whole.

The adaptation method needs to be agent-based and be employable by any agent,

at any level of the organisation, and at any time, on the basis of its local views.

However, the resultant reorganisation of the structure should benefit the whole

organisation and not just the particular agents that initiate the reorganisation.

We lay emphasis on the decentralised nature of the method so that it is robust

without any critical points of failure. Also, since the purpose of this research is

guided by the concept of autonomic systems (as discussed earlier), we focus on

adaptation methods that target the organisation characteristics like the structure

rather than the individual agent characteristics.

4. Evaluate the effectiveness of this structural adaptation mechanism.

Chapter 1 Introduction 4

The efficacy of the adaptation technique will be measured by comparing the per-

formance of the organisations using this method against those not reorganising

and those reorganising using other approaches. Such an analysis is necessary to

both validate our research and also discover avenues for future work.

By achieving these objectives, we claim to advance the state of the art in the domain of

problem-solving agent organisations in the following ways:

• Developing the first completely decentralised adaptation method for problem-

solving agent organisations placed in dynamic task environments that works solely

by modifying the structural aspects of the organisation, without changing the

agents or their internal characteristics.

• Developing the first decentralised structural adaptation method that focuses on

the efficiency of problem-solving agent organisations.

In the present report, we partially achieve these objectives by developing the adaptation

method for a limited model of problem solving agent organisations in which the organ-

isation is assumed to be closed (no agents can leave nor can any new agents join the

organisation), the agents are assumed to be invariant (the properties of the agents are

fixed) and the environmental conditions (communication costs and so on, but not the

tasks) are assumed to be unchanging. This has resulted in the following paper:

Ramachandra Kota, Nicholas Gibbins and Nicholas R. Jennings (2008). Decentralised

structural adaptation in agent organisations. Submitted to International Workshop on

Organised Adaptation in Multi-Agent Systems (at AAMAS’08).

Next, we describe the structure of this report by highlighting the contents of the following

chapters.

1.2 Report Structure

The next chapter discusses related work in the areas of interest, which are organisation

modelling, organisation performance evaluation, self-organisation and other reorganisa-

tion mechanisms.

Chapter 3 presents the framework of agent organisation that is developed and used in

this work. We also introduce and explain an evaluation mechanism to measure the

efficiency of the organisation.

Chapter 1 Introduction 5

Chapter 4 details the constraints that have been placed on the organisation model for

developing an adaptation mechanism and then goes on to present a decentralised struc-

tural adaptation method which enables the agents to modify the organisation structure

on the basis of their history of interactions.

Chapter 5 records the experiments conducted on the adaptation method and analyses

the obtained results.

Finally, Chapter 6 discusses how the work, presented in this report, will be extended in

the future and presents a time-line for this research until the end of the thesis.

Chapter 2

Related Work

This chapter presents an overview of current research in the areas of organisation mod-

elling and self-organisation in multi-agent systems. The first section studies the main

work in modelling agent organisations and compares it with respect to the first and sec-

ond requirements stated in Section 1.1 which refer to developing a model for problem-

solving agent organisations and an evaluation mechanism to measure its performance.

The next section presents the motivation and characteristics of self-organisation in multi-

agent systems and follows them up with a description and analysis of the various tech-

niques developed in this particular field. The third and final section summarises the

chapter by highlighting the work that provides the point of departure for this study

and also drawing attention to the open issues that need to be addressed to meet the

requirements laid out in Section 1.1.

2.1 Modelling of Agent Organisations

Organisation modelling involves modelling the agents comprising the organisation, the

organisational characteristics (structure and norms) and the task environment (detailing

the tasks that should be performed by the organisation). The following subsections

discuss various ways in which an organisation can be modelled in multi-agent systems by

considering each of the three components (tasks, organisation characteristics and agents)

individually. This section concludes with a discussion of the methods for evaluating

the performance of agent organisations. This discussion is important in this context,

because our second requirement (Section1.1) specifies designing an evaluation mechanism

applicable for agent organisations.

6

Chapter 2 Related Work 7

2.1.1 Modelling Tasks

Typically, agent organisations execute some task(s). Therefore, the tasks of an or-

ganisation form an integral part of its description. Specifically, the set of tasks can

be considered to be the problem space of the organisation (Carley and Gasser, 1999).

Hence, developing a representation model for the tasks is a necessary step in the process

of modelling an organisation.

In more detail, the tasks can be atomic or made up of two or more tasks (or subtasks)

which, in turn, may be composed of other tasks. The tasks may have dependencies

among them, resulting in a temporal ordering of the tasks in the organisation. In

this context, Thompson (1967) identifies three kinds of such dependencies — pooled,

sequential and reciprocal. Two or more tasks whose results are jointly required to

execute another task are said to be in a pooled dependency relation with each other. A

sequential dependency exists between tasks if they have to be performed in a particular

sequence. Finally, a reciprocal dependency exists if the tasks are mutually dependent on

each other and have to be executed at the same time. However, the tasks dependencies as

suggested by Thompson have subsequently been interpreted in different ways in different

models.

In particular, Jin and Levitt (1996) model the task dependencies in their ‘Virtual Design

Team (VDT)’ closely following Thompson’s model. However, they extend the sequential

dependency by representing it as a successor relationship between the tasks and further

classifying it as a finish-to-start successor (if the task can only be started on the com-

pletion of the other task comprising the dependency) or a start-to-start successor (if

the task can be started after the start of the other task). Similarly, they consider two

types of reciprocal dependencies — information-related and work-related. The former

is present between two tasks when some information from the execution of one task is

required by another and vice versa. The latter is present in those cases where a change

in the execution of one task effects the other and vice versa. This representation is

particularly useful if the dependencies are to be modelled in detail.

In contrast, in the PCANS model, Krackhardt and Carley (1998) demonstrate that

both pooled and reciprocal dependencies, as described by Thompson, can be derived

from sequential dependencies. For example, if task 1 is dependent on the completion of

tasks 2 and 3, then tasks 2 and 3 share a pooled dependency relationship. But that also

means that task 1 is sequentially dependent on task 2 and task 3. Thus, all the tasks

that form the sequential dependencies of a particular task are in a pooled dependency.

Similarly, two tasks sharing a reciprocal dependency with each other can be broken

into smaller tasks which have a series of sequential dependencies. For example, let

there be two tasks, 1 and 2, having a reciprocal dependency with each other. They

can be divided as, say, task 1a and task 1b (representing the first task) and task 2a

Chapter 2 Related Work 8

and task 2b (representing the second one) such that task 1a is sequentially dependent

on task 2a, which is sequentially dependent on task 1b, which, in turn, is sequentially

dependent on task 2b. Thus, their representation enables the designer to model just a

single dependency.

Other than the task dependencies, the task environment of an organisation can be further

characterised on the basis of the degree of repetition, volatility, bias, and complexity

(Carley and Gasser, 1999). Thus, tasks could be repetitive, quasi-repetitive (same type of

tasks, but some details in the specific instances are different) or non-repetitive. Volatility

denotes the rate of change of the tasks. Bias represents the extent to which all possible

tasks may have the same outcome, while complexity denotes the amount of processing

required by the tasks. Changes in the task environment can also be classified as —

sudden change, oscillating, and gradual change. In sudden change, the task environment

changes considerably in a short span of time. Oscillating environments are those in which

the tasks keep fluctuating between two or more types at fairly regular intervals of time.

In gradually changing environments, the change in tasks is uniformly distributed over a

considerable period of time.

For our present requirements, we just require a simple task model containing depen-

dencies, and hence we will use the PCANS model to represent our tasks. Also, the

characteristics of the task environment, as described above, will be considered while

generating the input tasks during experimentation (see Section 5.1.1).

2.1.2 Modelling Organisational Characteristics

Approaches towards organisational design in multi-agent systems can be considered to be

either agent-centric or organisation-centric (Lematre and Excelente, 1998). The former

focus on the social characteristics of agents like joint intentions, social commitment,

collective goals and so on. Therefore, the organisation is a result of the social behaviour

of the agents and is not created explicitly by the designer. On the other hand, in

organisation-centric approaches, the focus of design is the organisation which has some

rules or norms which the agents must follow. Thus, the organisational characteristics are

imposed on the agents. Dignum and Dignum (2005) show that an explicit organisation

structure helps in the achievement of the objectives of the organisation as these goals

may be wider than an individual agent can perceive. Due to these reasons, and also

because our requirements relate primarily to problem-solving agent organisations (see

Section 1.1), we only study organisations in multi-agent systems whose design is modelled

explicitly. This means we exclude those approaches based on agent-centric organisation

design (Gasser et al., 1988; Cohen and Levesque, 1991).

Chapter 2 Related Work 9

Against this background, several models for depicting computational organisations have

been developed by researchers in the multi-agent systems community. We shall examine

the main ones in the rest of this subsection:

• Opera: The OperA framework (Dignum, 2003) is useful for formal specification

of agent societies. Its organisational model specifies the organisational character-

istics on the basis of the social structure (role characteristics including skills and

relations), interaction structure (agent interactions constitute scenes), normative

structure (describing expectations and boundaries for agent behaviour) and com-

munication structure (ontology for knowledge representation and communication

language). This work is then extended by the OMNI framework (Vazquez-Salceda

et al., 2005) which enables the designer to specify the organisational structure, the

interactions between the agents and the normative structure independent of the

design of the agents. So, it provides a much broader framework for designing agent

organisations. However, in both of these frameworks, the agents are not permit-

ted to modify the organisational characteristics that have been pre-designed and,

hence, they do not provide a suitable platform for reorganisation and do not meet

our requirements.

• Islander: Islander (Sierra et al., 2004) uses the following elements to model the

organisation — dialogic framework, scenes, performative structure and norms. The

dialogic framework defines the roles that can be adopted by the agents. Every

role defines a fixed pattern of behaviour expected from the agent playing that

role. The dialogic framework also defines the relationships between the roles and

the communication ontology. The activities in the organisation are called scenes

and involve instances of interactions between the agents playing the roles. A

collection of related scenes form a performative structure. The norms represent

the commitments, obligations and rights of the participating agents. All these are

defined during design time and cannot be changed during execution. Hence, this

model too is not flexible enough to incorporate reorganisation.

• AGR: A simpler model is provided by Ferber and Gutknecht (1998) and later

extended by Ferber et al. (2003). They define an organisation as a structural

relationship between a collection of agents. Specifically, a meta-model is presented

to describe organisations based on agents, groups and roles (AGR). Agents are

part of one or more groups and play specific roles within the groups. These groups

are created by the agents and the creating agent assumes the group manager

role. The structure of the group identifies all the roles and interactions that can

appear in the group. The group structure consists of a tuple containing all the

possible roles, an interaction graph specifying all valid interactions between the

roles in the group and an interaction language that should be followed by the

Chapter 2 Related Work 10

group. The organisation structure contains the set of groups and the possible

interactions between the roles belonging to different groups. Therefore this model

provides a reasonable representation for an organisation containing several groups

or departments. While, we do not require several groups in our organisation, we

will use the idea of the organisation structure determining the interactions between

the members as this interpretation emphasises the importance of the structure.

• Moise: A somewhat similar approach is followed by Moise (Hannoun et al., 2000),

which considers an organisation structure as a graph defined by a set of roles, a set

of different types of links and a set of groups. A role consists of a set of missions.

Here, a mission represents a permitted behaviour in the system and is defined by

a set of goals, plans, actions and resources. An agent playing a role must obey

some permitted behaviours which are specified by the missions comprising the

role. The missions may be viewed as the set of services that should be provided

by the agent playing the role. Organisation links are arcs between the roles and

represent the interactions between the roles. The model suggests three types of

links — communication, authority and acquaintance. Communication links specify

the kind of communication that can exist between the roles, the protocols to be

followed and the particular missions for which they can be used. Authority links

represent the subordination of one role to another along with the context for which

it is valid. The context is defined by the missions associated with the link. The

acquaintance links of a role specify all the roles about which the agent playing this

role can possess information and use in its decision mechanism. The definition of

groups contains a set of roles, a set of missions (which is a subset of the combined

set of missions of the roles belonging to the group) and a set of links which exist

between roles belonging to the group. Some of the ideas used in this model,

especially those relating to the organisation structure will be used in the work on

developing our model of organisation. These ideas of relations and interactions

with their corresponding graphs provide a good insight into the influence of a

structure on the organisation’s performance and is therefore helpful to us.

• VDT: A slightly different approach is followed by the Virtual Design Team (VDT)

framework (see Section 2.1.1). Its purpose is to develop a computational model of

real-life project organisations (an organisation involved in completion of a project

or set of tasks). It does not use the agent-role paradigm. Instead, the agents are

fixed to their duties and are called actors. The organisation structure is composed

of two structures — a control structure and a communication structure. The for-

mer determines the supervision and authority between the members and specifies

who reports to whom, while the latter specifies who can talk to whom. An ad-

ditional parameter representing the formalisation of the organisation determines

the frequency of communication between the actors. Evidently, VDT attempts

Chapter 2 Related Work 11

to model a problem-solving organisation, and therefore, very relevant for our re-

quirements. However, it lacks flexibility in the organisation structure, as it only

permits purely hierarchical organisations. Therefore, we do not directly use the

whole VDT model but only some parts of it.

• ODML and KB-ORG: More recently, ODML (Horling and Lesser, 2008) was

developed as a quantitative framework for representing organisations. It uses a

mathematical syntax, rather than the commonly used structures and norms rep-

resentation for denoting organisations. The organisational models produced by

ODML can be quantitatively compared against each other for a given set of re-

quirements. Therefore, a search space of organisation instances can be explored

to arrive at the most befitting design. However, as noted by the authors them-

selves, a significant amount of domain knowledge and effort is required to build

the models. Another work on similar lines is KB-ORG (Sims et al., 2008), which

is an automated knowledge based process for designing organisations. KB-ORG

searches and prunes the design search space by using a search algorithm that

utilises the levels of knowledge provided by the requirements specification. Nev-

ertheless, both of these methods for designing organisations are very complex and

require an elaborate specification of the organisational requirements, while we just

require a simple problem-solving organisation model. Moreover, they produce an

instantiated organisation but not the generic model we need.

• FORM: In work that has similar aims to our own, Schillo et al. (2002) aim at

an organisation framework that is flexible enough for self-organisation. However,

they take a strictly emergent view of self-organisation and focus mainly on the

social delegation aspects (gift exchange, voting and so on) in agent organisations.

Furthermore, their method specifies a set of organisation models, and the par-

ticipating agents choose, whether or not, to join such organisations. Therefore,

this framework does not inherently aid the development of problem-solving agent

organisations.

• NMAS: Another work that focuses on developing organisation models that permit

reorganisation is by Vazquez and Lopez y Lopez (2007). They follow a norm based

approach for modelling hierarchical agent organisations in which every role has a

position profile associated with it. This profile is specified in terms of positional

norms and an agent can take up a role by changing its own set of norms to conform

to these positional norms. Therefore, their model allows the agents to change their

organisational roles at run-time. However, the model requires that all positions and

norms are specified at the outset itself. Moreover, such a model is useful for open

systems with external agents, but is not required for the closed problem-solving

organisations that we are currently interested in.

Chapter 2 Related Work 12

To sum up, the OperA, OMNI and Islander frameworks allow for an elaborate specifi-

cation of an agent organisation and the interactions in it. The designer is expected to

specify, in detail, the scenes and the interactions between the agents. These models are

most suited for creating organisations in an open environment where external agents

can enter, participate and leave the organisation. This is because they provide rigid

guidelines for the organisation, which the participating agents need to obey, leading to

regulation of the organisation. But they are not suitable for our purposes because the

agents are not empowered to modify the organisation and have to abide by predefined

structure and norms. They are also not apt for specifying organisation-level goals or ac-

tivities as these organisations only restrict agent interactions, but do not strive to solve

any problems or achieve any goals as such. On the other hand, the models that were

developed to permit reorganisation (like the frameworks of Schillo et al. and Vazquez

et al.) follow norm based approaches to enable the agents to change between specified

roles. Therefore, any possible reorganisation process will be restrained to the few con-

figurations visualised at design time. Moreover, these models are also not very suitable

for problem-solving organisations in which the agents are internal to the system and

with specified capabilities. The mathematical methodologies like ODML and KB-ORG

specify frameworks to come up with efficient organisation designs given a quantifiable

set of requirements. However, our set of requirements are too simple to warrant these

complex algorithms. Moreover, they produce an instantiated, mathematically defined

rigid organisation but not a generic model or framework of an organisation. Fortunately,

the AGR and Moise organisation models are useful to develop goal driven organisations

in which agents are part of the structure and perform some tasks. Furthermore, VDT

aims to model a problem-solving agent organisation and hence the ideas used in VDT

are appropriate for our first requirement, to model a simple problem-solving agent or-

ganisation which receives some task inputs, performs the tasks and returns the results.

Therefore, the concepts introduced by AGR, Moise and VDT will form the primary basis

for our organisation model.

2.1.3 Modelling Agents

An overview of modelling agents in the context of organisations is presented by Carley

and Gasser (1999). From this, it is apparent that the modelling of agents varies across

different organisation models. In particular, agents in the organisation may be homoge-

neous or belong to different classes. The agent’s knowledge and cognition capability may

be quite basic and primitive or highly sophisticated. The agents within the organisation

may be selfless and cooperative or selfish and competitive. The abilities of the agents

may be represented as a simple vector or as a complex combination of skills, decision

strategies, preferences, modes of behaviour and so on.

Chapter 2 Related Work 13

Against this background, while all the organisation design approaches described in the

previous subsection, with the exception of VDT, leave the agent development to the

designer, VDT models the members of the organisation called actors in great detail.

The main characteristics of the actors are attention allocation (determines the deci-

sion making behaviour of how the actor chooses among several task alternatives) and

information processing (determines the skills, capacity and other processing character-

istics). This design of agents will be partly used in our organisation model as it meets

our requirements for modelling agents in the context of problem-solving organisations.

Another concept that we will use is obtained from Gershenson (2007) where the agents

are required to perform task assignment but can only address one request per time-

step. Thus, we will also make use this of representation of agents possessing limited

computational capacities so that efficiency of the agents plays a prominent role in the

organisation performance.

2.1.4 Evaluating an Organisation’s Effectiveness

Organisation characteristics play a major role in the performance of the organisation

(Galbraith, 1977). Here, the criterion we will use for measuring the performance of the

organisation is how well it performs its task (Fox, 1988) as we believe this provides a

good indication of the organisation’s efficiency.

Other evaluation methods include a qualitative comparison of the characteristics of

commonly used organisation structures in multi-agent systems as presented by Horling

and Lesser (2005). A somewhat quantitative method is presented by Grossi et al. (2006)

for evaluating the structures of agent organisations. Using graph theory, they quantify

the structural features of the organisation and then suggest how the values thus obtained

can be used to analyse a number of properties of organisational structure (like robustness,

efficiency and flexibility). However, both the above works are completely independent

of the tasks that are being handled by the organisation. As a result, they fail to capture

the suitability of a structure according to the task environment that it is situated in.

Therefore, both these approaches are not appropriate for our second requirement which

refers to developing an evaluation function for an organisation on the basis of the tasks

executed by the organisation.

On the other hand, in VDT (see Section 2.1.1), the measure of the performance of the

organisation is on the basis of the load on the organisation. The load on the organi-

sation is represented in units of work volume, thereby providing a common calibration

for different tasks. The total work volume of a task is taken as the sum of the pro-

duction work volume and coordination work volume. The production work is divided

into planned work (which is pre-defined in the task description) and production rework

(arising due to exceptions). The production rework and the coordination work depend

Chapter 2 Related Work 14

upon the characteristics of the organisation along with the particular task. Therefore,

the resultant load on the organisation is a function of the tasks and the organisational

characteristics and acts as an performance indicator. Thus, the evaluation method of

VDT is compatible with our second requirement, as it is based on the task load of the

organisation and, it will, therefore, be adopted in this work.

2.2 Self-Organisation in Multi-Agent Systems

As already noted, computing systems are becoming increasingly interconnected and

more difficult to maintain (Horn, 2001). Due to the increase in the size, complexity and

the number of components, it is no longer practical to anticipate and model all possible

interactions and conditions that the system may experience at design time. Similarly,

the systems are becoming too large and too complex for system managers to maintain

them at run-time. To tackle these problems, a number of researchers have argued that

such large complex systems should be autonomic — that is, the computing systems

should manage themselves (Kephart and Chess, 2003; Mainsah, 2002). Specifically,

autonomic systems are expected to maintain and adjust their operations according to

changing requirements, demands, resources, other external conditions and failures. In

short, autonomic systems possess the capability of self-management. The four aspects of

self-management are self-configuration, self-optimisation, self-healing and self-protection

(also called the self-* properties). Self-configuration in autonomic systems denotes that

they should be able to autonomously configure and install or integrate themselves on

the basis of some high level policies and prevailing system conditions. Self-optimisation

means that the systems should continually try to be more efficient by monitoring and

tuning some parameters, learning to make appropriate choices and adapting to their

environment, thereby delivering a better performance. Autonomic systems are also

expected to have self-healing properties and should be able to detect, diagnose and

resolve any internal problems. Finally, the self-protection characteristic indicates that

they should be capable of defending themselves against malicious attacks.

Moreover, this self-management behaviour of autonomic systems should arise in a decen-

tralised manner, through the interactions between its individual components along with

the internal self-management properties of the components. By so doing, the autonomic

system will be more robust as there won’t be a single point of failure. Such decentralised

autonomic systems exhibiting the self-* properties, by definition, have to be autonomous

and proactive. Therefore, a multi-agent systems approach is well suited for developing

autonomic computing systems (Tesauro et al., 2004) as agents are also autonomous

Chapter 2 Related Work 15

and proactive by nature1. Multi-agent systems also provide a suitable paradigm for

decentralised systems in which autonomous individuals engage in flexible high-level in-

teractions. Thus, the self-* principles of autonomic systems can be mapped onto the

notion of agents by considering the components of the system to be autonomous agents

engaging in interactions to produce an autonomous self-managed system (De Wolf and

Holvoet, 2003). This naturally gives rise to the need for developing agents that are ca-

pable of displaying self-* properties both individually and collectively. Thus, it becomes

necessary to explore multi-agent systems that can exhibit these self-management prop-

erties. The area of research that deals with this issue is self-organisation in multi-agent

systems and, therefore, we will explore the different facets of this area in the remainder

of this section.

2.2.1 The Basics

The concept of self-organisation is inspired from natural systems which function without

any external control and adapt to changes in the environment through spontaneous reor-

ganisation. This self-organising ability makes these natural systems robust to changing

environmental conditions, thus enhancing their survivability. In the context of comput-

ing systems, self-organisation refers to the process of the system autonomously changing

its internal organisation to handle changing requirements and environmental conditions

(see Chapter 1 for the formal definition). It may involve creating an organisation from a

set of unorganised agents or could mean reorganising an already existing organisation of

agents or both, creating an organisation and continuously reorganising it as the environ-

mental conditions vary. Further, self-organisation can be classified (Di Marzo Serugendo

et al., 2005a) as:

• Strong self-organising systems — these function without any explicit central

control

• Weak self-organising systems — these have a central controller or planner,

internal to the system, that supervises the (re-)organisation process.

The concepts of strong self-organisation and emergence are closely coupled. Emergence

is a phenomenon in which some properties and structure appear at the macro level

which are not present at the micro level (Di Marzo Serugendo et al., 2005b, 2006).

The structure appearing at the macro level is a result of the actions at the micro level,

though no such order is observed at the micro level. Relevant examples include the

1Other approaches for autonomic computing include those based on reinforcement learning (Tesauro,
2007; Dowling et al., 2006). However, such RL mechanisms requires modelling the problems as Markov
Decision Processes (MDPs) which may not always be possible because of incomplete observability and
so on.

Chapter 2 Related Work 16

foraging action of ants and appearance of moving patterns in the game of life (Holland,

1998). Often, self-organisation, when occurring in a decentralised manner through local

interactions, is an emergent phenomenon. However, it can exist without emergence and

vice versa. For our purposes, we study self-organisation mechanisms, irrespective of

whether they are an emergent phenomenon or not. Since strong self-organising systems

do not have any central control and hence no single point of failure, they provide the

most suitable paradigm for developing autonomic systems. In particular, they have the

following characteristics:

• No External Control: The primary characteristic of self-organisation is that

there is no external control of any kind. Reorganisation processes are initiated

internally and result in changing the internal state of the system. Thus, the system

manages itself. Also, the process of self-organisation implies that some kind of

order be present in the resultant system after organisation or reorganisation.

• Dynamic Operation: A self-organising system is expected to evolve over time.

Therefore, self-organisation is a continuous process. The property of self-organisation

exists permanently in the system.

• No Central Control: Strong self-organising systems have no central authority

to guide the reorganisation process. This lends robustness to the system as there

is no single point of failure. Often, the organisation emerges through the local

interactions of the individual components.

Thus, any strong self-organising approach will have to possess these characteristics.

Next, we look at the different mechanisms in which self-organising systems can be de-

veloped.

2.2.2 Mechanisms of Self-Organisation

Several approaches have been explored by researchers for developing self-organising

multi-agent systems. The different approaches can be classified on the basis of the

mechanisms employed by them. Di Marzo Serugendo et al. (2006) identify the following

categories of mechanisms:

1. Direct interaction based mechanisms: These are based on local interactions

and computations of the agents that lead the system to converge to a coherent

stable state. The focus is on generating an organisation from disordered agents.

It is mainly applicable to the structural aspects of organisation like topological

placement and communication of the agents (Mamei et al., 2004).

Chapter 2 Related Work 17

2. Stigmergy-based mechanisms: In a stigmergic process, global system be-

haviour emerges from the indirect interactions of the agents that occur by modi-

fying the environment (Bourjot et al., 2003). It is difficult to predict the outcome

of self-organisation methods based on these mechanisms as the global behaviour

emerges through interactions with the environment.

3. Reinforcement-based mechanisms: In reinforcement mechanisms, a reward

function catalyses the reorganisation. Agent behaviours are rewarded on the basis

of some parameters and, consequently, agents adapt their behaviours to achieve

better rewards. Therefore, self-organisation emerges from the adaptive behaviour

of the agents. This mechanism is commonly used to create specialisations and divi-

sions of labour among agents (Mano et al., 2006). Some reinforcement mechanisms,

broadly classified as collective intelligence (COIN), follow a distributed reinforce-

ment learning approach (Tumer and Wolpert, 2004). A collective, in this context,

is a system in which the agents making up the system have private utilities, while

the system has a global utility. Such a system is factored if increasing any agent’s

private utility cannot decrease the global utility. Furthermore, the system will

have high learnability if any agent’s actions do not affect the private utilities of

the other agents. However, in general, a completely factored system cannot have

complete learnability and vice-versa (Wolpert and Tumer, 2001). This is because

if the system is perfectly factored and the agent’s utility is precisely aligned with

the global utility, then such a utility function of the agent will be highly influenced

by the other agents that also influence the global utility thereby leading to low

learnability. Therefore, achieving the requisite balance between the two is a major

challenge.

4. Cooperation-based mechanisms: Self-organisation can be achieved through

locally cooperative interactions between the agents that modify their behaviour

on the basis of their local perceptions resulting in system-wide reorganisation. Lo-

cally cooperative interactions refer to agents behaving in such a way that they

are benevolent towards other agents in the organisation. Two commonly used

mechanisms are Organisational Self Design (OSD) and Adaptive Multi-agent Sys-

tems (AMAS). These two methods along with their advantages and drawbacks are

discussed, in detail, in Section 2.2.3.

5. Architecture-based mechanisms: These mechanisms are based on the archi-

tectures or meta-models of the organisation. The commonly used method is ho-

larchies which are hierarchies made up of holons. Holons are entities that can

exist independently or can join with other holons to form bigger holons. Holons

dynamically altering the holarchy according to changes in the environment, forms

the basis of self-organisation (Bongaerts, 1998; Fischer, 2005). Therefore, holon

based approaches focus on forming and disbanding groups of agents with a strict

Chapter 2 Related Work 18

hierarchy between the groups. Thus, while holarchies are always pyramidal in

shape, we do not intend to place such constraints on the structures that might

exist in an organisation.

These mechanisms have been used on several occasions, in different ways, to develop

self-organisation systems. Since, we require reorganisation in explicitly defined problem-

solving organisations, the agents will need to be cooperative and also have direct inter-

actions with each other. Moreover, we intend to apply the mechanism of using past

information for adaptation, somewhat similar to reinforcement methods. In the fol-

lowing subsection, we shall study a number of examples which have implemented self-

organisation in multi-agent systems.

2.2.3 Examples of Self-Organisation in MAS

A number of applications have been developed that use self-organisation in multi-agent

systems to address real-life problems like information retrieval, resource allocation and

so on (Bernon et al., 2006). These applications employ a variety of techniques, ranging

from those using reactive agents (actions directly triggered by percepts) and stigmergy,

to those using agents that deliberate about cooperative situations. Self-organisation

is displayed by virtual organisations (which do not have any organisation structure)

and also by explicitly modelled organisations. While most self-organisation methods

are emergent and decentralised, a few utilise a central controller internally. In the fol-

lowing, we shall study some of the implementations spanning across the various types

of self-organisation mechanisms and discuss their usefulness with respect to our third

requirement (stated in Section 1.1) which is developing a decentralised structural adapta-

tion method for agent organisations. We divide the different implementations into those

containing cooperative agents, self-interested agents, stigmergy, reinforcement and net-

works and, finally, those dealing with agent organisations (these do not particularly fit

into any of the other classifications). We study each of them in turn.

First, we consider self-organisation by cooperative agents. One of the earliest multi-agent

systems to employ self-organisation was developed by Gasser and Ishida (1991). It uses

an organisation self design (OSD) mechanism to provide the agents with the ability

to reorganise themselves. Specifically, OSD uses agent composition and decomposition

to restructure the organisation. Gasser and Ishida employ OSD in a problem-solving

organisation embedded in an environment. The agents split themselves into two or

merge with a neighbour depending upon the changing conditions. The agents decide on

the reorganisation actions (merging or splitting) on the basis of heuristic rules which

are triggered by changes to the requirements or the environment (Ishida et al., 1992).

This work was then extended by Kamboj and Decker (2006) to use a more detailed

Chapter 2 Related Work 19

representation for tasks and resources. However, OSD mechanisms function by spawning

and merging agents and would not be suitable in scenarios where the agents cannot be

merged or divided. Hence, the OSD mechanism doesn’t satisfy our requirements as we

aim to develop reorganisation techniques that change the structure and norms of the

organisation, but not the agents themselves.

Another self-organising mechanism for cooperative agents is based on Adaptive multi-

agent systems (AMAS) theory (Picard and Gleizes, 2002). This theory aims to achieve

self-organisation in problem-solving multi-agent systems through the locally coopera-

tive actions of the agents (Capera et al., 2003a,b). The agents are supplied with skills,

communication, knowledge about other agents and criteria to detect non-cooperative

situations (NCS). The NCS are those that are adverse to the organisation. They are

classified into three kinds— (i) incomprehensible signals from the environment, (ii) per-

ceived information does not initiate any activity in the agent and (iii) the conclusions

are not useful to others. The specific list of NCS needs to be pre-defined at design time

by the designer. An agent on perceiving a NCS, tries to return to a cooperative situation

through actions selected by its decision mechanism. Therefore, through the socially co-

operative behaviour of the agents, an organisation emerges and is maintained. However,

this approach relies on the designer being able to identify all possible non-cooperative

situations and building the agents so that they handle them locally. Thus, this approach

cannot be applied in environments where all the states of the organisation cannot be

identified or classified at design time. Therefore, AMAS theory is also not suitable for

our purpose.

Secondly, we move on to self-organisation by self-interested agents. While the above

two approaches are based on agents that are cooperative in nature, self-organisation can

also be present in multi-agent systems made up of self-interested agents. Virtual organ-

isations (VOs) (Norman et al., 2004) are an example of such self-interested agents au-

tonomously organising and reorganising into groups depending upon the circumstances

in a market-place. Similarly, Knabe et al. (2003) use a holonic approach (see Section

2.2.2) to develop agents that form and disband virtual enterprises (VEs), according to

their trade volume with the other agents. Both VEs and VOs are applicable in open dy-

namic environments wherein independent agents compete to provide services, but cannot

be applied to a single problem-solving organisation of agents as they do not aim towards

an efficient organisation as a whole. Self-organisation by competitive agents within an

organisation is also used by Klein and Tichy (2006) to develop a fault-tolerant multi-

agent system. In this case, fault tolerance is achieved through the agents dynamically

reconfiguring their task specialisations to obtain better rewards. Therefore, every agent

uses a simple decision theoretic approach by estimating the rewards for performing any

of the other services and then chooses that service which predicts the highest reward

to the agent. This reward function is designed such that when there are more agents

Chapter 2 Related Work 20

than the demand requires, the reward is negative and vice versa. However, this work

too is not suitable for our objectives as it is based on the assumptions that tasks do not

have dependencies and that all agents have the ability to perform all services. While the

ideas presented in this work are quite useful to us in terms of the agents reasoning based

on rewards, they cannot be directly applied to our scenario as in our case, the primary

goal of reorganisation is improving the efficiency of the organisation without changing

the agents. Nevertheless, we will pick the idea of using a decision theoretic approach

and use it in our method.

Thirdly, we consider self-organisation by stigmergy, reinforcement and in networks. Stig-

mergic and reinforcement mechanisms, mainly inspired from biology, have been used in

reactive agents to develop self-organising multi-agent systems (Mano et al., 2006). The

major problem with these mechanisms is that being emergent, the agent design does not

guarantee particular global behaviour. Thus, the connection between local behaviours

and global results is difficult to obtain. Therefore, the design of the agents is based on

extensive experimentation to arrive at the correct parameters that result in useful global

behaviour, thereby, making it an unreliable and lengthy approach.

In more detail, a stigmergic self-organisation approach that has been successfully applied

in a multi-agent system is demonstrated by Schlegel and Kowalczyk (2007). They tackle

the problem of resource allocation by proposing a distributed algorithm that does not

require any central controller. Agents need to dynamically allocate tasks to servers

that are shared between all the agents. The agents attempt to optimise their task

allocations by forecasting the future task load on the servers on the basis of the history

of server utilisation, obtained from the completed tasks at those servers. Every agent

maintains a set of predictors per server. In every such set, one predictor is anointed as

the active predictor and is used to forecast the future load on that server. On the basis

of the forecasts on each of the servers, the agent chooses the server with the maximum

capacity forecasted. Thus, the decision mechanism is based on standard decision theory.

Also, using the feedback from the time taken to complete its tasks, the agent evaluates

the active predictor for each server and switches to a different predictor, if necessary.

The various strategies followed by the predictors are fixed at design time, only the

method of selecting the active predictor is affected by the agent’s history. In this way,

efficient resource allocation emerges from the indirect interactions between the agents

(as the agents only interact with the servers). Some of the ideas presented in this

work, mainly the utilisation of the histories of task allocations and the use of decision

theory, will be used in our reorganisation method. The major difference between this

work and our requirements is that here, the agents do not interact directly and take

all decisions independently; while in our model, the agents need to interact with each

other to collectively decide about their relations. Furthermore, in this case, the self-

organisation process influences the task allocations on a case-to-case basis, while we

Chapter 2 Related Work 21

require self-organisation at the higher level of agent relations that, in turn, influence the

task allocations.

Apart from stigmergic self-organisation seen in the biological domain, self-organisation

that is seen in social and economic domains like trust behaviour of humans, gossipping

and markets can also be applied to develop self-organising computing systems (Hassas

et al., 2006). For example, the T-MAN protocol (Jelasity and Babaoglu, 2005) uses a

gossip based mechanism to construct network topologies. The nodes are modelled as

agents and select their neighbours through a ranking function that is based on local

messages (gossip). This technique is useful to create an organisation, but not to dynam-

ically adapt it according to changing conditions. Hence, it does not satisfy our criteria

for a reorganisation method.

Network related problems provide a suitable scenario for employing self-organisation

techniques. To this end, Mills (2007) presents a survey of various self-organisation

techniques being used in wireless sensor networks. However, these methods are specific

to network problems like query-routing and internal power management and cannot

readily be ported to generic optimisation problems in multi-agent systems. Nevertheless,

one particular work that is relevant to the current study is by Itao et al. (2002) in which

autonomous components provide network services by forming relationships with other

components based on a reward mechanism. The neighbour selection problem in self-

organising networks can also be tackled by using a machine learning approach (Beverly

and Afergan, 2007). Though the idea is generic, the implementation of the learning

mechanism is specific to networks.

Finally, we deal with self-organisation in agent organisations. Though, the works de-

scribed above can be applied to agent organisations, they do not deal with explicitly

modelled organisations. In contrast, Horling et al. (2001) use a TÆMS representation

to model an agent organisation and propose a diagnostic subsystem to be incorporated

inside the agents. Such a subsystem would help the agents identify deficiencies in the

organisation and suggest reorganisation measures. In particular, their proposed architec-

ture has three layers — symptoms, diagnosis and reactions. Symptoms are observations

of the environment, the diagnosis layer identifies deficiencies on basis of the symptoms,

while the reactions layer suggests suitable measures based on the diagnosis. Though this

work provides a means for the agents to detect the need for reorganisation, it does not

elaborate on concrete reorganisation steps. A mapping between the diagnosis and the

reactions is assumed. Thus, all the reorganisation steps have to be pre-designed which

is not always possible. In a similar work, Hoogendoorn et al. (2007) present a formal de-

scription of the re-design process of organisations based on the AGR organisation model

(see Section 2.1.2). Their work suggests an approach to represent the reorganisation

Chapter 2 Related Work 22

process based on the requirements and goals of the organisation. However, it requires a

global view of the organisation and does not explicitly specify how to reorganise either.

Dignum et al. (2004) discuss reorganisation in agent organisations by examining and

classifying the various motivations for reorganisation and the different kinds of reorgan-

isation possible. They broadly classify reorganisation into two types— (i) behaviour

change involving short term behaviour modification of some agents and (ii) structural

change involving long term changes in the structure of the organisation. Moreover,

they emphasise on the necessity of concretely determining the complete utility of an

organisation and its structure, which can thereby indicate the benefits of a given type

of reorganisation. Thus, while their suggestions further justify our second requirement

which refers to an evaluation mechanism for the organisations, they do not indicate any

possible solutions.

A more detailed work on reorganisation that uses an explicit organisation model is by

Hubner et al. (2004). Their work incorporates a controlled reorganisation mechanism

into the MOISE framework (see Section 2.1.2). Controlled reorganisation follows a

top-down approach in which a group of specialised agents carry out the reorganisation

process which includes monitoring the organisation, designing the changes and imple-

menting them. Thus, it is not bottom-up or completely decentralised as only some of

the agents have reorganising capability. It also requires designing some agents with

complex reorganisation modules. While this work addresses the same problem that we

are interested in, the approach does not satisfy our requirements as we are interested in

a completely decentralised approach in which all agents have reorganisation ability.

Bou et al. (2006a,b) also incorporate a reorganisation mechanism into the Islander or-

ganisation model (see Section 2.1.2). In it, a central authority named an ‘autonomic

electronic institution’ modifies the norms of the organisation to accomplish institution

level goals. Thus, this mechanism of self-organisation is centralised and is based purely

on modifying the organisational level features like norms, without changing the agents

or their relationships (structure). Another centralised mechanism developed by Hoogen-

doorn (2007) uses a max-flow network based approach to dynamically adapt organisa-

tions according to environmental fluctuations. It uses the AGR model (see Section 2.1.2)

and specifies a mapping between this model and max-flow networks. In this case, the

agents are regarded as nodes and their relationships as links of the network. The task

requirements are modelled as the environmental pressure on the organisation which is

mapped onto the source-sink paradigm of max-flow networks. The adaptation mecha-

nism is based on identifying and adding capacities to the bottlenecks in the system and

duplicating roles and the associated links to improve the max-flow of the system. How-

ever, again this approach requires a central authority to carry out the reorganisation.

Chapter 2 Related Work 23

Also, it aims at improving the capacity by adding links and nodes but does not attempt

to optimise by removing redundant links or nodes.

Another such graph based approach for reorganisation is presented by Wang and Liang

(2006). They represent the organisation structure using three graphs— (i) a role graph

denoting the relations between the roles (ii) an agent graph, which is an instantiation

of the role graph, depicting the relations between the agents depending on the roles

allocated to them and (iii) a connector graph which links the agent graph to the role

graph. The reorganisation process is based on graph transformation that occurs as agents

shift between the roles. However, this transformation takes place according to predefined

changes that correspond to different possible scenarios. Therefore, like AMAS, this

method also requires that all the situations are anticipated at design time.

In recent work, Gershenson (2007) demonstrates a self-organisation approach for the

problem of task assignment in agent networks. An agent, that receives a task, needs

to send out some dependency requests to its neighbouring agents. Once it receives the

responses to these dependencies, its task will be complete. In this way, every agent will

receive several such dependency requests from its neighbours, which it stores in a queue

and solves in a first-come, first-served basis. Furthermore, an agent can respond to only

one request per time-step. Therefore, the performance of the network is measured by

the number of tasks that are completed. This depends on the time ‘wasted’ by the

agents waiting for the responses to their dependency requests from agents having long

queues. The self-organisation process works by first identifying the agent (say A) with

the longest queue. Then, among the agents dependent on A, the one with the largest

waiting period chooses another agent (one with the shortest queue) to replace A as its

neighbour. Therefore, the global knowledge of the queues of every agent is required in

this method. This does not conform with our requirements, as in our case, the agents

will only possess local information. However, another method that is mentioned in this

work, but not expanded, relates to dynamically creating direct links between frequently

interacting nodes to ‘cut out’ the intermediaries and shorten the communication time.

This idea, originally presented by Bollen and Heylighen (1996) in the context of the

world wide web, will be built up on in our adaptation process.

After analysing the various self-organisation techniques in multi-agent systems, we find

that most of them cannot be applied to explicitly modelled problem-solving organisation

of agents. This is because they cannot be incorporated in deliberative agents working

towards common goals as are present in such organisations. Those that can be applied

either self-organise by creating and deleting the agents (OSD) or by enumerating all

the possible scenarios (AMAS). But, our third requirement is to develop decentralised

reorganisation techniques without the addition/deletion of agents in a non-deterministic

environment. Furthermore, the few self-organisation approaches that have been applied

Chapter 2 Related Work 24

on organisation models of agents are centralised in nature, while we seek a completely

decentralised approach in which all the agents are capable of reorganisation without

holding the complete view of the organisation. Nevertheless, we can still reuse the ideas

of agents being cooperative to each other, decision theoretic approaches for the reasoning

of the agents and changes in agent behaviour based on history of allocations to develop

our reorganisation method.

2.3 Summary

In this chapter, we have studied several existing approaches for modelling agent or-

ganisations which include modelling the tasks, the agents and the organisation charac-

teristics (like structure and norms). We then examined some methods for evaluating

the performance of an organisation. Next, we provided the definition and features of

self-organisation in multi-agent systems. We followed that by enumerating the various

mechanisms of self-organisation. Finally, we concluded by providing a survey of the var-

ious techniques of self-organisation that have been developed and used in multi-agent

systems and analysed them with respect to our requirements.

To sum up, we find the PCANS model for task representation suitable for our needs and

similarly, the agent model of VDT is appropriate for designing the agents. However, for

organisation modelling, we will pick up ideas from a number of organisation models like

AGR, MOISE and VDT because none of them individually satisfy all our requirements.

On the other hand, most of the self-organisation techniques that we studied do not meet

our requirements, as either they cannot be applied to agent organisations (like stigmergy

or network related) or they work by modifying the agents. Those that reorganise by

changing the structure or norms of agent organisations are centralised in nature. But, as

already stated, we want to explore completely decentralised methods for reorganisation.

Nevertheless, we can still reuse some of the concepts of self-organisation in cooperative

agents and reorganisation mechanisms based on rewards or history to obtain the same

kind of structural reorganisation as displayed by the centralised approaches in agent

organisations.

We now move onto our model of agent organisation and reorganisation techniques. The

next chapter presents our organisation model in detail. The following chapter introduces

our reorganisation method along with the accompanying assumptions and constraints.

The remaining chapters after that discuss the experimental results and conclusions.

Chapter 3

Modelling Agent Organisations

This chapter describes our model of an agent organisation. As mentioned in Section

2.1, this involves modelling the task environment, the agents and the organisational

characteristics. Furthermore, it also presents a method for evaluating the performance

of the organisation in terms of its efficiency. Therefore, this chapter addresses the

first two requirements detailed in Section 1.1 which are developing a framework for

problem-solving agent organisations and methods for evaluating such an organisation’s

performance.

In more detail, the purpose of our organisation model is to serve as a platform for

demonstrating reorganisation techniques (see Section 1.1). Thus, for now, we develop

a minimal organisation model without attempting to include all the possible features

that an organisation might have. Specifically, our model of an agent organisation is a

problem-solving group of agents situated in a task environment. By problem-solving

agents, we mean agents that receive some input (task), perform some actions on the

basis of that input (processing or execution) and return a result. Correspondingly, the

task environment presents a continuous dynamic stream of tasks to be performed. This

environment also has other parameters, independent of the task stream, which have a

bearing on the organisation. These can be considered to be the costs associated with

the environment. The task stream and the environmental costs are used as the basis for

evaluating the performance of the organisation. So, we proceed by first describing the

task environment, then the agent organisation and finally the evaluation mechanism.

Specifically, the next section details our task representation. The following section

presents our model of the organisation and its characteristics by describing the agents

and the organisation structure. Our method for evaluating the efficiency of the organ-

isation for a given set of tasks and environmental parameters is explained in the third

section. The final section summarises the chapter. A glossary of the terms introduced

in this chapter is given in Appendix A.

25

Chapter 3 Modelling Agent Organisations 26

3.1 Task Representation

The task environment contains a continuous stream of tasks that are to be executed

by the organisation. A task can be presented to the organisation at any point of time

and the processing of the task must start immediately from that time-step. Thus, the

organisation of agents is presented with an incoming stream of tasks that they should

accomplish. In detail, the organisation of agents provides a set of services which is

denoted by S. Every task requires a subset of this set of services. Services are the skills

or specialised actions that the agents are capable of. We model tasks as a composition

of several service instances in a precedence order. We define a service instance sii to be

a 3-tuple: 〈si, pi, ni〉 where si ∈ S (i.e. si is a member of the services set S), pi ∈ N

denotes the amount of computation required per time-step (computational rate) of the

particular service si and ni ∈ N denotes the number of time-steps that the service si

should be provided to accomplish this service instance. Therefore, an agent taking up

this service instance has to execute it at the specified rate pi for the specified time-steps

ni (as opposed to, say, executing it at half the rate and double the time-steps). SI

denotes the set of all service instances.

Following the PCANS model of task representation (see section 2.1.1), we only consider

sequential dependencies between the service instances. Thus, the service instances of a

task need to be executed following a precedence order which is also specified in the task

representation. We model the precedence order as a tree structure in which the service

instances that form the child nodes of a particular service instance need to be executed

first before that service instance (parent node) can be executed. Thus the parent node

is sequentially dependent on its child nodes. This goes on recursively until there are

service instances which have no other child nodes (no sequential dependencies). These

will be the leaf nodes of the tree structure. Thus the root node or the final service

instance will have to be executed last in a task.

Thus, a task ti is defined as a tuple containing a set of service instances and a set of

dependency links:

ti = 〈{sij ∈ SI},Di〉 (3.1)

where Di is the set of dependency links containing links between the various sij of

the task. These links are directed arcs between any two service instances depicting a

sequential dependency of the source on the destination. So an element dj of Di is of the

form: dj = 〈six, siy〉 where six and siy are the service instances at the origin and the

destination of the link.

Chapter 3 Modelling Agent Organisations 27

city0

city3

city4 city2

city1

county s0

county s2

county s1

county s3

Figure 3.1: Map of the cities, their counties and the possible route

3.1.1 Example

To illustrate our task model, we will use it to represent a task derived from the domain of

distributed case-based reasoning (Plaza and McGinty, 2005). Collaborative case-based

reasoning is a form of distributed case-based reasoning, in which cooperative agents with

different problem-solving experiences jointly find solutions to given problems. McGinty

and Smyth (2002) use such an approach to tackle the problem of personalised route

planning. In more detail, let us assume that a user needs a route starting from city0

and covering city1, city2, city3 and city4. Also, we assume that finding a route to a city

requires geographical knowledge about the county containing the city. This knowledge

about the counties can be considered to be the services provided by the agents. Now,

supposing that city0 and city3 belong to the same county, they will require the same

service (say s0), while the others belong to different counties, thereby, requiring different

services (see Fig 3.1).

si0(s0,p0,n0)

si2(s2,p2,n2)

si4(s3,p4,n4)si3(s0,p3,n3)

si1(s1,p1,n1)

Figure 3.2: Representation of an example task

In terms of our model, this will translate to five service instances (si0, si1, si2, si3

and si4) each representing a city (city0, city1, and so on) and requiring services s0,

Chapter 3 Modelling Agent Organisations 28

s1, s2,s0 and s3 respectively. As a case-based reasoning approach is used to find routes

personalised according to the users’ preferences, the process of obtaining a route to a city

within a given county will require some amount of computation and some period of time

(for possible iterations of selection). Assuming that these details are also provided, we

can also supply our service instances with the specified computational rate (denoted by

p0, p1, and so on) and the specified time duration (t0, t1, and so on) that the computation

is required. Furthermore, finding a route to a city within a county also depends on the

entry and exit points to the county from the neighbouring counties. For instance, finding

the route within a county is dependent on the route from the border of this county to the

destination city in the neighbouring county. Therefore, our service instances will also

have dependencies within them. The task structure including the service instances and

the dependency links is shown in Fig 3.2 (an arrow indicates that the service instance

at the source node can only be executed once the service instance at the end node is

completed). Since the route requires going to city2 from city0, the internal route in

the county of city2 determines how the route from city0 should approach the common

border; si0 is dependent on si2. Similarly, si0 is also dependent on si1, which in turn,

is dependent on si2 and si3.

Therefore, the dependency links set D0 contains four elements representing the four

arrows shown. Thus:

D0 = {〈si0, si1〉, 〈si0, si2〉 〈si1, si3〉, 〈si1, si4〉}

Thus, the task tuple is:

t0 = 〈{si0, si1, si2, si3, si4},D0〉

In summary, our model of the task environment consists of a stream of tasks in which

each task is made up of a set of service instances and a set of dependency links between

the service instances. Every service instance specifies the service, the computational

rate and the number of time-steps that computation is required. Next, we describe the

representation of our agent organisation.

3.2 Organisation Representation

Since, we aim to model a problem-solving agent organisation, our organisation model

consists of a set of cooperative agents. An agent is an independent computational entity

that can provide one or more services. We model our agents by simplifying the agent

model used by VDT (see Section 2.1.3) and consider only the information processing

characteristics of the agents by overlooking the attention allocation characteristic. The

Chapter 3 Modelling Agent Organisations 29

attention allocation characteristic enables an agent to schedule its allocated tasks. How-

ever, this aspect is internal to an agent and completely independent of the organisation

structure which is our primary focus. Therefore, we simply assume that the agents do

not have a choice and have to execute all the service instances allocated to them on a

first-come-first-served basis.

In more detail, the agents are associated with particular sets of services. These sets

can be overlapping, that is two or more agents may provide the same service. Also,

building on the agent model used by Gershenson (see Section 2.1.3), every agent also

has a computational capacity associated with it. The computational load on an agent

(explained later), in a time-step, cannot exceed this capacity. Formally, let A be the set

of agents in the organisation. Every element in this set is a tuple of the form:

ax = 〈Sx, Lx〉 (3.2)

where the first field, Sx ∈ S denotes a set of services that belong to the complete service

set S and Lx ∈ N denotes the capacity. The agents, their service sets and their capacities

may change during the lifetime of the organisation.

The other features of an agent organisation, in general, are its structure and norms (see

Section 3.2.1). The structure of an organisation represents the relationships between

the agents in the organisation, while the norms govern the kind of interactions and mes-

sages possible between the agents. However, since we are developing a problem-solving

organisation, the agents are all internal to the organisation and share the same goals.

Moreover, all the agents will be designed in the same way, and therefore, their inter-

action protocol will be similar and can be internally specified. Therefore, an explicit

definition of norms is not required to regulate their interactions. Thus, in our model,

the relationships between the agents (denoted by the structure) also determine the in-

teractions between the agents. Formally, an organisation is defined as consisting of a

set of agents and a set of organisational links. It can be represented by a 2-tuple of the

form:

ORG = 〈A,G〉 (3.3)

where A, as stated above, is the set of agents, G is the set of directed links between the

agents (will be described later in this section).

As mentioned in the previous section (3.1), the organisation is presented with a contin-

uous stream of tasks which are completed by the agents through their services. Tasks

come in at random time-steps and the processing of a task starts as soon as it enters

the system. Task processing begins with the assignment of the final service instance

(root node) to a randomly selected agent. An agent that is ready to execute a particular

service instance is also responsible for the allocation of the service instances on which it

Chapter 3 Modelling Agent Organisations 30

is dependent (as specified by the dependency links of the task) to agents capable of those

services. Thus, the agents have to perform two kinds of actions: (i) allocation of service

instances and (ii) execution of service instances. For instance, if the service instance that

an agent is ready to execute is dependent on two other service instances, then that agent

needs to find and allocate appropriate agents to execute those two service instances, ob-

tain the results of the executions, then execute this service instance and finally send

back its result. Moreover, every action has a load associated with it. The load incurred

for the execution of a service instance is equal to the computational rate specified in its

description (the number of computational units it consumes in a time-step), while the

load due to allocation (management load) depends on the relations of that agent (will

be explained later). As every agent has a limited computational capacity, an agent will

perform the required actions in a single time-step as long as the cumulative load on the

agent is less than its capacity. If the load exceeds the capacity and there are actions

still to be performed, these remaining actions will be deferred to the next time-step

and so on. Also, the service instances received by an agent are performed (allocated

or executed) on a first-come first-served basis (no kind of scheduling is permitted). In

contrast, there is no limit to the number of messages (to communicate with its relations

(explained later)) that agents can send or receive in a single time-step. However, the

messages received in a particular time-step can only be interpreted by the agent in the

next time-step.

Next, we present, in detail, our representation of the organisation structure.

3.2.1 Organisation Structure

As stated earlier, agents need to interact with one another for the allocation of service

instances. The interactions between the agents are regulated by the structure of the

organisation. We base our model of organisation structure on the one described in

Moise (see Section 2.1.2). Specifically, we adopt its organisational links paradigm, but

ignore the missions associated with the links because, otherwise, the links will be task-

specific. This is not possible in our model since the agents will not know the whole

set of tasks at the beginning itself. We assume that the organisational links are valid

irrespective of the tasks being executed by the agents. Therefore, the structure of our

organisation can be described using three graphs — (i) acquaintance graph, (ii) control

graph and (iii) communication graph. The nodes in each of these graphs represent the

agents of the organisation. We now describe each one of the graphs in turn.

Acquaintance Graph: A directed graph in which an agent has a directed edge to

all other agents whose presence is known to it. The graph represents the acquaintance

relations between the agents of the organisation. Thus the acquaintance graph of an

organisation has to be a connected graph, as there should exist a path between any two

Chapter 3 Modelling Agent Organisations 31

agents. Thus, an agent has a directed edge to each of its acquaintances. The agent is

unaware of the presence of the other agents with whom it has no edge. They are called

strangers with respect to this agent.

Control Graph: A directed graph which has two types of edges denoting two kinds of

relations — authority and peer. A directed edge originates from one agent to another

if the first agent is a superior of the second. Therefore, the control graph depicts the

authority relations in the organisation. These superior-subordinate links can also be

called authority links. The other kind of links that will be present in the control graph

are called peer links. These will be edges between agents that are considered to be peers

of each other. The peer relationship will be present among agents who are considered

equal in authority with respect to each other and is useful to occasionally cut across the

hierarchy. Generally, it is expected that an agent will interact more frequently with its

subordinates and superiors than its peers.

The control graph is a sub graph of the acquaintance graph. Thus, every edge present in

the control graph must also be present in the acquaintance graph, though the converse

needn’t be true (every pair of acquaintances needn’t necessarily have an authority of peer

relationship). That is, for an agent to control or be in the control of another agent, it

must be aware of the presence of that agent. Similarly, an agent cannot consider another

agent to be its peer without being acquainted with it. We term two agents having only

an acquaintance relation (and not having an authority or a peer link) between them as

pure acquaintances of each other.

Following this, we can classify the various relationships that can exist between agents into

four types — (i) stranger (not knowing the presence), (ii) pure acquaintance (knowing the

presence, but no interaction), (iii) peer (low frequency of interaction) and (iv) superior-

subordinate (high frequency of interaction). The type of relation present between two

agents determines the information that they hold about each other and the interactions

possible between them1. The information that an agent holds about its relations is:

1. The set of services provided by each of its peers (Sy of each peer ay)

2. The accumulated set of services provided by each of its subordinates. The accumu-

lated service set of an agent is the union of its own service set and the accumulated

service sets of its subordinates, recursively. Thus, the agent is aware of the ser-

vices that can be obtained from the sub-graph of agents rooted at its subordinates

though it might not know exactly which agent is capable of the service. We denote

the accumulated service set of an agent ax as ASx.

1For our purposes, we ignore the social obligation aspects of the relations as we are dealing with
cooperative agents and also because we assume that an agent has to process all the services instances
received by it irrespective of the sender being a superior or a peer

Chapter 3 Modelling Agent Organisations 32

Furthermore, the mechanism for allocating service instances to other agents is also based

on the agents’ relations (explained later in this section). Note that, to avoid an infinite

loop of task delegation (due to circular loop of authority), the authority relations are not

permitted to have cycles. In summary, the authority relations impose the hierarchical

structure in the organisation, while the peer relations enable the otherwise disconnected

agents to interact directly.

Communication Graph: An undirected graph that represents the existing commu-

nication links between the agents. An agent can send a message to only those agents

that are directly linked to it in the communication graph. It is also a sub graph of

the Acquaintance graph. Thus, superior-subordinate agents and peer agents will have

communication links between them.

ax

az

aw

ay

(a) Acquaintance Graph

ax

az

aw

ay

(b) Control Graph

ax

az

aw

ay

(c) Communication Graph

Figure 3.3: An example organisation structure

All the graphs described above can be combined to form a single Organisation Graph,

denoted by G, containing a set of organisational links (relations). Every link ri that

belongs to G is of the form:

ri = 〈ax, ay, typei〉 (3.4)

where ax and ay are agents that the link originates and terminates at respectively and

typei denotes the type of link and can take any of the values in the set {Acqt, Supr, Peer}

to denote the type of relation existing between the two agents (the value Acqt denotes a

pure acquaintance relationship). The absence of a link between two agents means that

they are strangers (no relation).

To illustrate the framework, consider a sample problem-solving agent organisation that is

performing the personalised route planning tasks, described in Section 3.1.1, using a case-

based reasoning approach, as stated earlier. Taking a limited view, let this organisation

have four agents — ax, ay, az and aw. The services provided by an agent are basically

the knowledge bases contained by it about the routes in the various counties. Therefore,

let us assume that ax contains information about county s0 and hence provides service

s0. Similarly, ay provides service s1, aw provides s2 and az provides s3. Moreover, since

Chapter 3 Modelling Agent Organisations 33

() Service set

[] Peers service set
{} Accumulated service set

peer
subr

peer
supr

ax

az

aw

(s0){s0,{s1},{s0,s2,s3}}[]

(s3){s3,{s0,s2}}[]

(s0,s2){s0,s2}[s1]

ay

(s1){s1}[s0,s2]

Figure 3.4: An example organisation graph

s0 is a big and densely populated county generating a lot of queries with a long border

with s2, aw contains information about s0 in addition to s2.

Given this, let us look at the possible structure of the organisation. Let ay and aw have

a peer relationship. Also, assume ax has two subordinates — ay and az (because a lot

of users need routes from cities in s0 to s1 and s3). az, in turn, has aw as a subordinate.

Moreover, all the agents have an acquaintance relationship with one another, except aw

which is not aware of ax. For this organisation, the three graphs are shown in Fig 3.3.

In the control graph, the continuous arrow indicates a superior-subordinate relationship

(superior at the start of the arrow) and the dashed arrow represents a peer relationship.

The G for this organisation contains 8 organisational links which are 3 superior links, 2

peer links and 3 acquaintance links. Thus:

G = {〈ax, ay, Supr〉, 〈ax, az, Supr〉, 〈az , aw, Supr〉, 〈ay, aw, P eer〉,

〈aw, ay, P eer〉, 〈ay , az, Acqt〉, 〈az , ay, Acqt〉, 〈ax, aw, Acqt〉}

In addition, the information possessed by the agents about the services provided by their

relations is shown in Fig 3.4. The parenthesis denote the services provided by the agent

itself, the curly braces contain the accumulated service set of the agent and the square

brackets contain the services provided by the peers. For example, the accumulated

service set of agent ax, in turn, contains three sets representing its own service (s0), the

accumulated service set of its subordinate ay (s1) and the accumulated service set of its

other subordinate az (s0, s2, s3).

Against this background, we will explain the process followed by an agent for allocating

service instances to other agents and how this mechanism is primarily influenced by the

organisation structure.

Chapter 3 Modelling Agent Organisations 34

3.2.2 Agent Decision Mechanism

As discussed earlier, agents need to perform the allocations of service instances along

with the executions. During task execution, whenever any agent requires a service

instance to be executed (either because it has been assigned that service instance or

because the service instance forms a dependency of another service instance that is being

executed by the agent), it first checks whether it is personally capable of the service and

whether it has available computational capacity (not completely filled by the load) to

perform the service instance. If so, it delegates the service instance to itself and proceeds

towards executing it. However, if the agent does not possess that service capability or

has no available capacity, it iterates over all its subordinates to find the prospective

agents to whom the service instance can be assigned. Once it obtains the set of suitable

subordinates, it randomly assigns the service instance to one of them (since the agents

do not possess information about the available capacities of the other agents, they do

not seek optimal distribution of the load and just allocate randomly to suitable agents).

In this case, a subordinate qualifies for being assigned the service instance if it contains

the required service in its accumulated services set. If there are no suitable subordinates

(no subordinate or their subordinates are capable of the service) and it is capable of

the service itself (but did not initially assign to self because its capacity is filled), then

it will add the service instance to its waiting queue for execution. However, if it is not

capable of the service (and nor are its subordinates), the agent proceeds, as above, by

iterating over its peers to find the set of prospective agents and randomly assigning it

to one of them. However, in this case, it only checks the set of services directly provided

by the peers (since it does not hold information about the accumulated services sets of

the peers). If it doesn’t find any suitable peers either, it randomly assigns the service

instance to one of its superiors (considered as handing back because it could not find a

suitable agent). On the occasions when it does not have any superiors, it checks among

its acquaintances for a suitable agent and tries to form a subordinate relation with it,

if that doesn’t result in a cycle of authority links (a cycle may result in an unending

loop of assignment and hence should be avoided). Otherwise, it forms a peer relation

with that acquaintance. One unit of management load is added to the load on the agent

every time it considers an agent for an assignment (explained in detail in Section 3.3).

It should be noted that every service instance will eventually find an agent that will

execute it and therefore all tasks are completed by the organisation.

An agent that is ready to execute a particular service instance proceeds by first checking

whether it has any dependencies. If it does, the agent assigns each of the service in-

stances forming the dependencies to other agents (this may include itself) following the

procedure detailed above. When assigning a service instance, it first sends an assignment

message with the service instance details to the assigned agent. Every assigned agent

Chapter 3 Modelling Agent Organisations 35

input: Service instance sij = 〈sj, pj , nj〉, Agent ax = 〈Sx, Lx〉
if sj ∈ Sx AND Lx − lx ≥ pj then // lx is the load on the agent

Process(sij); // delegation to self

end

listOfSuitableAgents ← ∅;
foreach subordinate ay do

if sj ∈ ASy then // ASy is the accumulated service set of ay

listOfSuitableAgents.Add(ay);
end

end

if listOfSuitableAgents == ∅ AND sj ∈ Sx then

Process(sij); // delegation to self, despite filled capacity

Return();
end

if listOfSuitableAgents == ∅ then

foreach peer ay do

if sj ∈ Sy then // Sy is the service set of ay

listOfSuitableAgents.Add(ay);
end

end

end

if listOfSuitableAgents == ∅ then

foreach superior ay do
listOfSuitableAgents.Add(ay);

end

end

if listOfSuitableAgents 6= ∅ then
assignedAgent ← randomly selected from listOfSuitableAgents ;

end

foreach acquaintance ay do // finding suitable acquaintances

if sj ∈ Sy then
listOfSuitableAgents.Add(ay);

end

end

assignedAgent ← randomly selected from listOfSuitableAgents ;
Form relation with(assignedAgent);
Assign(sij,assignedAgent); // ‘Assigned’ function of assignedAgent

Algorithm 1: Assigned (sij): assignment of a service instance sij by agent ax

Chapter 3 Modelling Agent Organisations 36

input: Service instance sij = 〈sj, pj , nj〉
dependenciesList ← Get dependencies of(sij);
foreach sik ∈ dependenciesList do

Assign(sik,self); // start by assigning dependencies to self

end

obtainedResultsofAllDependencies ← FALSE;
while obtainedResultsofAllDependencies 6= TRUE do // waiting for results of

obtainedResultsofAllDependencies ← TRUE; // execution of dependencies

foreach sik ∈ dependenciesList do

if Waiting for result(sik) then
obtainedResultsofAllDependencies ← FALSE;

end

end

end

if Lx − lx ≥ pj then

TxE
.Enque(sij); // adds to the tasks execution list

else

TxW
.Enque(sij); // adds to the tasks waiting list

end

Algorithm 2: Process (sij): processing of a service instance sij by agent ax prior
to its execution

sends back an acknowledgement message comprising a list of details of the agents form-

ing the assigned agents after it, ending with the last assigned agent (which is always the

agent that is actually executing the service). The agent executing the service instance

(also called the delegated agent for that service instance) sends back the result of the

execution to the agent that assigned the service instance to it and this result is similarly

passed back, in sequence, by all the assigned agents to finally reach the agent that first

required the execution of the service instance. An agent can start the execution of its

delegated service instance only after it obtains the results of all the service instances that

form the dependencies of the particular service instance. Every message (assignment,

acknowledgement and result) has a communication cost associated with it (explained

in Section 3.3) The decision mechanism described above is presented in the form of a

pseudocode in Algorithms 1 and 2.

Considering the sample organisation in Fig 3.4 executing the task in Fig 3.2, the distri-

bution of service instances across the agents occurs as shown in Fig 3.5. In detail, we

assume that the task arrives at agent ax (randomly selected). Hence, ax checks that it

is capable of the final service instance si0 (as it is capable of service s0 and has available

capacity) and therefore, allocates si0 to itself. In the next time-step, ax needs to allocate

the two dependencies of si0 which are si1 and si2 to capable agents. For allocating si1,

it checks the accumulated service sets of its two subordinates (ay and az) and allocates

to ay (because it is the only one capable of service s1). Similarly, it allocates si2 to az

because this subordinate contains service s2 in its accumulated service set. In the same

Chapter 3 Modelling Agent Organisations 37

subr

peerpeer

supr

assignment chain

si3

az

aw

si1 ax

si0

ay

si2

si4

Figure 3.5: Distribution of service instances of the task in Fig 3.2 across the agents

way, before ay can execute si1, it needs to obtain the results of the two dependencies

(si3 and si4) by allocating them to appropriate agents. At the same time, az has to

reallocate si2 to its subordinate because it is not capable of the service s2 itself. So,

ay allocates si3 to its peer aw as it has no subordinates. It also hands back si4 to its

superior ax as it has found no suitable subordinates or peers for that service. Meanwhile,

az allocates si2 to its subordinate aw which then proceeds to execute it. Moreover, ax

assigns the service instance si4 requested by ay to its subordinate az (capable of service

s3) which then proceeds to execute it.

Thus, the structure of the organisation influences the allocation of service instances

among the agents. To sum up, we present our organisational model by representing

the agents, including their allocation mechanism, and the organisation structure. In the

next section, we study our method for evaluating the performance of the organisation

based on its efficiency.

3.3 Organisation Performance Evaluation

Before designing any kind of adaptation techniques, there needs to be a mechanism that

can evaluate the performance of an organisation for some given set of tasks (see Section

1.1). Towards this end, we introduce the concept of load, cost and benefit of an agent

and thus also of the organisation in total. The total cost and benefit of the organisation

are considered to be the two parameters measuring the efficiency of the organisation.

Decreasing the cost or increasing the benefit will mean improving the efficiency and vice

versa. These load, cost and benefit values are calculated for every time-step throughout

the lifetime of the organisation and hence provide a good measure of the performance

of the organisation.

Chapter 3 Modelling Agent Organisations 38

In greater detail, our evaluation mechanism is essentially the one used by VDT (see sec-

tion 2.1.4) and is of two types — task-related (production work in VDT) and management-

related (coordination work in VDT). We further simplify it by not considering any pro-

duction rework and denoting coordination work as just the allocation of the dependencies

in a task.

The cost of the organisation is based on the amount of resources being consumed by

the agents. In this case, we consider the cost of an agent to be equal to the network

resources utilised to transmit its messages. Therefore, cost to the organisation due an

agent ax, for a time-step, is:

costx = C.cx (3.5)

where cx is the number of messages sent by that agent in that time-step and C is the

communication cost coefficient. C represents the proportion of a computational unit

required for the transmission of a single message by the network. Moreover, the cost of

the organisation is the sum of the costs of all the messages being transmitted in that

time-step (obtained by adding the individual agents costs from Eqn 3.5):

costORG = C.

|A|∑

x=0

cx (3.6)

where A is the set of agents in the organisation.

Unlike the cost, which is dependent on the number of messages, the benefit of the

organisation is affected by the load on the agents. As stated earlier, agents have limited

capacities and their computational load cannot increase beyond this capacity. The load

on ax, in a time-step, is calculated as:

lx =

|TxE
|∑

i=0

ei,x + M

|TxF
|∑

i=0

mi,x (3.7)

• ei,x is the amount of execution computation of ax required by task ti

• mi,x is the amount of management computation done by ax for task ti

• TxE
is the set of tasks being executed by ax

• TxF
is the set of tasks being assigned by ax

• M is the management load coefficient

More specifically, ei,x represents the sum of the computational rates of all the service

instances of task ti that are being executed by ax in that time-step. Similarly, mi,x is

the amount of management computation done by ax for deciding the allocation of the

Chapter 3 Modelling Agent Organisations 39

required service instances of task ti to other agents. It is equal to the sum of the number

of agents (relations) that ax had to consider for the allocation of the service instances of

ti in that time-step. Also, the management load coefficient M represents the proportion

of a computational unit used up by the agent when it evaluates whether an agent can

be assigned a service instance.

This load lx on ax cannot exceed its capacity Lx (lx ≤ Lx). Any excess tasks will be

waiting for their turn in the sets TxW
and will adversely affect the benefit of the agent.

Therefore, the benefit value reflects the speed of completion of the tasks. Hence, the

benefit of an agent, at a time-step, is equal to the total amount of computation of the

service instances being executed by that agent subtracted by the amount of computation

required by the service instances that are waiting to be executed or allocated by the

agent. Therefore,

benefitx =

|TxE
|∑

i=0

eix −

|TxW
|∑

i=0

eix (3.8)

In more detail, TxW
represents the set of tasks that have service instances waiting to

be either executed by ax or allocated by ax to appropriate agents. Therefore, to obtain

the maximum possible benefit, the agent should never have any waiting tasks (it should

never be overloaded) and the assignment of the dependent service instances should occur

in the same time-step that they are discovered as dependencies. Furthermore, similar

to the organisation cost, the total benefit of the organisation is simply the sum of the

individual agent benefits (from Eqn. 3.8):

benefitORG =

|A|∑

x=0

benefitx (3.9)

Since, the benefit should be maximised while the cost needs to be minimised, the overall

efficiency of the organisation is measured as

efficiencyORG = benefitORG − costORG (3.10)

It is important to note that while the agents have their own individual benefit values,

trying to selfishly increase their own benefit needn’t necessarily lead to an increase in the

overall benefit of the organisation because an agent’s actions affect the other agents. For

example, an agent can perform allocations quickly by having just one subordinate and

delegating most tasks to that agent (thus not causing any loss to its own benefit), but

that subordinate agent may be overloaded as a result, leading to a significant decrease in

its benefit and that of the organisation. Therefore, the agents, being cooperative, need

to maximise the organisation benefit, but they do not possess the complete information

Chapter 3 Modelling Agent Organisations 40

about the load and benefits of the other agents that contribute to the organisation

benefit.

In order to better explain this evaluation process, we now present an illustrative example.

3.3.1 Example

si0(s0,p0,n0)

si2(s2,p2,n2)

si4(s3,p4,n4)si3(s0,p3,n3)

si1(s1,p1,n1)

(a) Task t0

subr

peerpeer

supr

assignment chain

si3

az

aw

si1 ax

si0

ay

si2

si4

(b) Organisation

Figure 3.6: Assignment of service instances among the agents

Let us evaluate the cost and benefit values for agent ax of the organisation in Fig 3.4 when

it is performing the service instances belonging to the task t0 in Fig 3.2 (reproduced in

Fig 3.6(a)). Also, Fig 3.6(b) shows how the service instances are eventually distributed

among the agents in the organisation. For ease of calculation, we assign values to the

coefficients as:

C = 0.25 and M = 0.50 (3.11)

Chapter 3 Modelling Agent Organisations 41

Let us also assume the capacity of ax to be Lx = 2. At the second time-step, having

decided to execute si0, agent ax has to allocate the dependencies which are si1 and si2

to other agents.

It first allocates si1 to ay after traversing through its subordinates. This would take

2M load because it has two subordinates. Since this load is less than the capacity Lx,

it then allocates si2 in the same way to az again using up 2M . Thus, m0,x = 4 as the

sum of the relations considered is 2 for each of the two service instances. Therefore, the

total load on ax, in this time-step, is (from Eqn 3.7):

lx = 0 + M ∗ 4 = 0.5 ∗ 4 = 2

Also, ax has to send two assignment messages, one to ay and the other to az, informing

them about the allocations. Therefore, the cost because of ax is (from Eqn 3.5):

costx = C ∗ 2 = 0.25 ∗ 2 = 0.50

Similarly, the benefit from ax is obtained from Eqn 3.8

benefitx = 0− 0 = 0

This is because, ax did not execute any service instance in this time-step (TxE
= ∅)

and there are no tasks waiting for execution or allocation either (TxW
= ∅). Since, all

the other agents are inactive in this time-step (they haven’t received any tasks yet), the

overall cost of the organisation is (from Eqn 3.6):

costORG = costx + costy + costz + costw = 0.50 + 0 + 0 + 0 + 0 = 0.50

Similarly, the benefit of the organisation is (from Eqn 3.9):

benefitORG = benefitx + benefity + benefitz + benefitw = 0 + 0 + 0 + 0 = 0

Let us now consider another time-step and focus on agent aw. Let us assume that the

capacity of aw is Lw = 3. Similarly, let service instances si2 and si3 have the following

values:

si2 = 〈s2, 3, 10〉 and si3 = 〈s0, 1, 17〉

Also, let us assume that aw is executing service instance si2 in this time-step, while si3

is waiting for execution as there is not enough available capacity to execute si3 while

si2 is being executed (since 3− 3 < 1). Now, as the agent does not send any messages,

its cost (from Eqn 3.5):

costw = 0

Chapter 3 Modelling Agent Organisations 42

However, the benefit from aw depends on the service instances being executed (TxE
=

{si2}) and service instances waiting for execution or allocation (TxW
= {si3}) as follows

(from Eqn 3.8):

benefitw = p2 − p3 = 3− 1 = 2

where p2 and p3 are the computational rates of si2 and si3 respectively.

supr subr
peer peer

assignment chain

aw

si1

ay

si4

si2

si0

si3
az

ax

Figure 3.7: Another organisation and the task allocations

Now, let us consider a different organisation structure in Fig 3.7 executing the same

task as the earlier one. In this case, ax has the other three agents as its subordinates.

Therefore, ax allocates si1 to ay and si2 to aw. Also, ay allocates si3 to ax. However,

ay has to delegate si4 indirectly to az via ax. The eventual allocations of the service

instances across the organisation are also shown in the figure. Even in this case, let us

evaluate the cost and benefit values for agent ax in the second time-step. Similar to the

earlier case, ax has to assign service instances si1 and si2 to its subordinates. However,

in this case, it has three subordinates. Therefore, allocating si1 to ay requires 3M load,

as it has to traverse through all the three subordinates. Hence, the assignment process

of si1 eats up 3M = 3 ∗ 0.5 = 1.5 of the capacity Lx, which is 2. After this, ax tries to

assign s2 but its capacity gets filled as soon as it checks its first subordinate ay (which

takes M load, that is 0.5). Therefore, the assignment process of si2 will be continued in

the next time-step. So, si2 goes into the waiting list TxW
.

Now, ax also sends a message to ay informing it about the assignment of si1. Therefore,

its cost is:

costx = C ∗ 1 = 0.25

However, the benefit of ax will be affected by the waiting service instance si2 whose

computational rate has to be subtracted. Therefore:

benefitx = 0− p2 = −3

Chapter 3 Modelling Agent Organisations 43

where p2 is the computational rate of si2, as stated earlier.

Similarly, for this case also, let us again consider aw at the same time-step as in the

earlier case, when it is executing si2. In contrast to the earlier case, aw has not been

assigned si3 (which has been assigned to ax instead). Therefore, the waiting task set of

aw, TwW
= ∅ and hence, the benefit will not be reduced (unlike earlier). Thus, benefit

of aw is:

benefitw = p2 = 3

3.4 Summary

In this chapter, we introduced our organisation model by presenting our representation

of tasks and organisations. The tasks are made up of service instances, each of which

specify the particular service, the computational rate and the time-steps required. The

organisation consists of agents providing services and having computational capacities.

The relationships between the agents could be pure acquaintance, peer or superior-

subordinate. The relations of the agents determine what service information is held by

the agents about the other agents and how to allocate service instances to them. We also

presented the coefficients that affect the environment (communication cost and manage-

ment load) and the functions for calculating the cost and benefit of the organisation,

thus enabling us to evaluate the efficiency of an organisation. Thus, we addressed the

two aims of this chapter, which also form our first two requirements in Section 1.1, that

involve developing a model for problem-solving agent organisations and a mechanism

for its evaluation.

The next chapter presents our adaptation method which is based on the organisation

framework developed in this chapter. The following chapter discusses the experiments

conducted on this adaptation technique in order to evaluate its effectiveness, and anal-

yses the results we obtained.

Chapter 4

Decentralised Structural

Adaptation

The third objective presented in Section 1.1 requires the development of a completely

decentralised agent-based structural adaptation approach for improving the efficiency

of a problem-solving agent organisation. It suggests that the reorganisation technique

should be employable by any agent in the organisation, at any time. Given this, this

chapter attempts to satisfy this requirement by presenting just such a reorganisation

mechanism.

In more detail, the first section of this chapter proceeds by examining the types of

strong self-organisation (see Section 2.2.1) that can be present in problem-solving agent

organisations, particularly elaborating on structural reorganisation. The next section

describes our decentralised structural adaptation method using the organisation model

presented in Chapter 3 as the application scenario. It first discusses the constraints

placed on the model and then explains our reorganisation method. The final section

summarises the chapter. The notation introduced in this chapter is also explained in

the glossary in Appendix A.

4.1 Reorganisation Methods

As discussed in Section 2.2, there are several methods for self-organisation in agent

systems, some of which are applicable to the adaptation of problem-solving agent or-

ganisations. A few of them work by changing the configuration of the organisation; as

per our requirements, we also aim to continuously improve the efficiency of the organi-

sation (see Section 3.3) by changing the configuration of the organisation (however, as

44

Chapter 4 Decentralised Structural Adaptation 45

discussed in Section 2.2.3, our requirements differ from the current approaches in many

respects). This will entail modifying the agents and/or their interactions (the organi-

sation’s structure). Towards this end, we can identify three major types of adaptations

and explain them using our formal organisation model. Specifically, adaptation that

seeks to improve the efficiency of the organisation can be achieved by:

1. Adding and removing the agents in the organisation (i.e changes to the set of

agents A).

2. Modifying the properties of the agents; that is agents obtaining new service abilities

and losing old ones (changes to the service sets {si...} of the agents A) and/or

changing their optimal capacities (modifying Lx).

3. Modifying the organisation structure thereby giving agents different superiors,

subordinates and peers (i.e changes to G).

We shall examine, in detail, each of these adaptation types in the rest of this section.

4.1.1 Changing the Set of Agents

Agents can be created and removed from the organisation depending on the variations

in the demand for the services of the agents (as specified by the tasks). Thus, this

adaptation method works by spawning clones of over-burdened agents to reduce the load

on them, and terminating agents that are not being used sufficiently. Thus, both these

steps may improve the efficiency of the organisation. In this context, OSD (see Section

2.2.3) provides a suitable mechanism for implementing this kind of reorganisation. A

similar method presented by Hoogendoorn (see Section 2.2.3), involves duplicating the

agents to ease the pressure on the system. When applied to our model, these methods

involve adding and removing elements from the agent set A, along with adding and

deleting the structural links associated with these agents from the organisation graph

G.

4.1.2 Changing the Properties of the Agents

Instead of spawning and terminating agents as suggested above, agents could individually

reorganise by changing the services they provide to meet the changing requirements. For

example, Klein and Tichy (see Section 2.2.3) present a method in which agents change

the services that they provide according to the rewards associated with the services.

In this case, services whose requirements exceed the capacities of the agents providing

them have positive rewards and vice versa. Also, the value of the reward is high if the

Chapter 4 Decentralised Structural Adaptation 46

unmet demand for the service is high and so on. Thus, this method helps in improving

the performance of the organisation as efficiency is dependent on how closely the load

matches the capacities of the agents. Formally, this method entails changes to the

elements of A. More specifically, it involves changing the set of services {sj ∈ S} of the

agents (ax, ay and so on) of A.

On similar lines, the computational capacities of the agents can be varied to match the

load on them. This method involves modifying the Lx parameter of the respective agent

ax.

4.1.3 Changing the Structure of the Organisation

Changing the interactions between the agents by modifying the structure is also an

effective means of achieving reorganisation as shown in some scenarios in Section 2.2.3.

In our organisation model, as agents are performing services and finding other agents

to allocate the prerequisite service instances, they may realise that they have a large

amount of a particular kind of interaction with some of the agents. Thus, forming

relations (in the control graph) with these agents (if not already present) may make the

organisation more efficient by resulting in shorter assignment chains leading to lower

cost and load on the agents. Similarly, dissolving existing relations with agents, with

whom little or no interaction is taking place, will also improve the efficiency by reducing

the management load on the agents as the agents will have fewer relations to consider

while allocating service instances.

subr

peerpeer

supr

assignment chain

si3

az

aw

si1 ax

si0

ay

si2

si4

Figure 4.1: Organisation before adaptation

For instance, considering the earlier example of the sample organisation in Fig 3.4 ex-

ecuting the task in Fig 3.2, the allocation of service instances across the agents is as

seen in Fig 4.1 (also explained in Section 3.2.2). We see that service instance si2 is

Chapter 4 Decentralised Structural Adaptation 47

peer peer
subrsupr

assignment chain

aw

si1

ay

si4

si3

si2

si0

ax

az

Figure 4.2: Organisation after adaptation

first allocated by ax to az, who then reallocates it to aw. Thus, the assignment process

required two steps and involved an intermediate agent az, leading to some extra man-

agement load being put on az (due to the allocation process) and extra communication

cost (since messages had to be indirectly passed forth and back between ax and aw via

az). Similarly, the assignment of si4 also required two assignment steps involving ax as

the intermediary.

However, had the organisation structure been different (see Fig 4.2), the load and cost

could have been reduced leading to a better organisation efficiency. In detail, if ax had

aw as its subordinate, then it could have directly allocated si2 to aw. This will involve

just a single assignment step and one assignment message (unlike two steps and messages

as required in the earlier case). Furthermore, if ax and az did not have any relation, then

the management load on ax will be less as it will not have to consider az while performing

allocations. Similarly, if ay had az as its subordinate, then si4 could have been directly

allocated to az instead of indirectly through ax. In this way, the performance of the

organisation can be improved by modifying the organisation structure through changes

to the agent relationships. This will involve changes to the organisation graph G.

Our motivation for developing self-organisation techniques in agent organisations is

guided by the development of autonomic systems (see Section 2.2). In particular, agent

based development of autonomic systems involves modelling the individual components

as agents. Therefore, changing the characteristics of these components will not be pos-

sible on all occasions. For this purpose, we attempt to develop adaptation techniques

that can be applied to organisations in which the agents and their internal characteristics

cannot be changed. These kinds of organisations, in which the agents and their charac-

teristics are fixed, are sometimes known as closed organisations (Lematre and Excelente,

1998). In a closed organisation, the first two types of adaptation (addition/deletion of

agents and changing agent properties), as detailed in the previously, will have to be ruled

Chapter 4 Decentralised Structural Adaptation 48

out. Hence, we are primarily interested in the last type — changing the organisation

structure. Therefore, while we intend to make our adaptation mechanism robust against

changing agents and their characteristics also, we do not seek to develop methods that

initiate changes to the agents or their characteristics as the means of reorganisation.

In summary, while the efficiency of the organisation can be improved by changing the

agents, their internal characteristics or their external relations, we solely focus on the

characteristics of the organisation like the agent relations. Next, we present our decen-

tralised structural adaptation method.

4.2 Our Reorganisation Method

In this section, we first list the various constraints that we have placed on the organ-

isation model for developing our reorganisation method. Following it, we describe the

reorganisation strategy using a decision theoretic approach.

4.2.1 Constraints on the Model

Even though we will be essentially using the organisation framework described earlier

(see Chapter 3), we need a slightly more restricted model and environment to permit

us to focus solely on structural adaptation techniques. Therefore, we list the various

constraints placed on the organisation and the environment for developing our reor-

ganisation mechanism. Note that the formal notation used here is defined in Chapter

3

1. Closed Organisation: The agents present in the organisation are permanent.

They cannot leave the organisation and, similarly, new agents cannot join. For-

mally, A is a static set.

2. Invariant Agents: The properties of the agents (i.e service set and computational

capacity) are fixed. Therefore, every element ax of A is constant. Moreover, the

agents do not crash or fail in any manner. This constraint will be relaxed in the

future work (see Section 6.1).

3. Compulsory and Ordered Tasks: All tasks must be accomplished by the or-

ganisation and the task processing should be initiated by the agent that the task

arrives at, immediately (the next time-step) after the task is presented to the

organisation. Therefore every task ti belonging to the task set T needs to be

completed by the organisation.

Chapter 4 Decentralised Structural Adaptation 49

4. Selfless Agents: The agents are only interested in reducing the cost and in-

creasing the benefit of the organisation and not their personal costs or benefits.

Therefore the agents only aim to to reduce costORG and increase benefitORG but

not costx or benefitx.

5. Agent Communication: A message can be passed only between two agents (no

broadcast is permitted). Also, any message costs C irrespective of its content or

length. As previously detailed in Section 3.2.2, the three types of messages are —

(i) assignment, (ii) acknowledgement and (ii) result of a service instance.

6. Benevolent and Knowledgeable Agents: Agents accept, without exception,

any service instance assigned to them by the other agents. Also, an agent is

acquainted with all other agents in the organisation. Thus, the acquaintance graph

is completely connected.

7. Reorganisation Cost: The reorganisation cost associated with forming or dis-

solving the relations does not depend on the agents or the type of the relation

but only the reorganisation cost coefficient. This reorganisation cost coefficient is

denoted by R and formally represents the cost to the environment for forming or

dissolving a relation between two agents.

8. Reorganisation Load: The process of deliberating about changing the relations

with other agents is assumed to put no computational load on the agents and

can be carried out in parallel to the actual task processing. Similarly, the non-task

related messages that might be passed while deciding about reorganisation are also

considered to not cause any communication cost to the organisation. Therefore

costx and lx of an agent ax are not affected by the reorganisation process.

By imposing these restrictions on the framework, we highlight the affect of the struc-

ture on the performance of the organisation through negating the unrelated factors like

unreliable systems or network, external agents and so on. Therefore, our structural adap-

tation mechanism focuses on improving the performance of the organisation in terms

of its efficiency. Against this background, we proceed to explain our reorganisation

mechanism.

4.2.2 Our Reorganisation Approach

The aim of our reorganisation method is to determine and effect changes in the organ-

isation structure to increase its efficiency (see Section 3.3). Our method is based on

the past interactions of the agents. We use only the past information of the individual

Chapter 4 Decentralised Structural Adaptation 50

agents because we assume the agents do not possess any information1 about the tasks

that will come in the future. Specifically, agents use the information about all their

past allocations to evaluate their relations with their subordinates, superiors, peers and

pure acquaintances. This evaluation is based on the possible increase or decrease of the

overall load and cost in case a subordinate or peer relation had previously existed (a

pure acquaintance had been a subordinate or a peer and so on), the relation had been

different (say, had a peer been a subordinate) or the relation hadn’t existed (a peer or

a subordinate had only been a pure acquaintance and so on). For example, an agent ax

evaluates its relation with its subordinate ay on the basis of the number of its service

instance dependencies that have been executed by ay. More specifically, ax assumes that

had ay not been its subordinate, then all its delegations to ay would have gone indirectly

via some intermediary agents. Therefore, ax will check whether the possible reduction

in its own load had ay not been a subordinate (because one less subordinate will lead to

a lower management load during allocations) is more than the possible increase in the

load and cost across the organisation (due to the resultant longer assignment chains).

In more detail, we formulate our reorganisation method using a decision theoretic ap-

proach since it provides us with a simple and suitable methodology for formally rep-

resenting the choices available to a decision maker, thus enabling it to make the right

selection. Since, our reorganisation method involves agents evaluating and changing

their relations, it is befitting to represent our method in terms of actions and utilities

as specified by decision theory. We denote the actions of an agent as establishing or

dissolving relations with other agents. Considering our model, there are two possible

relations between any two agents— peer or authority (assuming that the agents are

always acquaintances of each other). Therefore, four atomic actions are possible:- E = 〈

form subr, rem subr, form peer, rem peer 〉. The actions are mutually exclusive and can

be performed if the relation between the agents is in the requisite state (explained later).

Moreover, each of these actions has to be jointly performed by the two agents involved

in forming/removing the relationship link. Furthermore, the actions are deterministic

(there is no uncertainty regarding the outcome of an action which is the formation or

deletion of a link; only the utility of the outcome is not pre-determined). Therefore, the

agents have a value function (also called an ordinal utility function) which they attempt

to maximise.

Since our environment is characterised by various factors like the communication cost,

the load on the agents, and so on, the value function will have multiple attributes to

represent these different factors. In terms of two agents ax and ay jointly deliberating

an action, we list the five attributes that will constitute the value function:

1We are only focusing on generic reorganisation methods that are not dependent on any extra knowl-
edge about the task environment other than the tasks that have already been processed.

Chapter 4 Decentralised Structural Adaptation 51

1. change to the load on ax

2. change to the load on ay

3. change to the load on other agents

4. change in the communication cost of the organisation

5. reorganisation cost incurred by the organisation for taking the action

We selected this set of five attributes because they cover all the factors affecting the

efficiency, but at the same time, can be calculated independent of each other from the

history of task assignments. Therefore, this set of attributes exhibits mutual preferential

independence (MPI). That is, while every attribute is important, it does not affect the

way the rest of the attributes are compared. Therefore, the value function can be

represented as simply a sum of the functions pertaining to the individual attributes.

That is, it is an additive value function of the form:

V = δloadx + δloady + δloadOA + δcostcomm + costreorg (4.1)

Against this background, we discuss the actions and states of the agents. For every

pair of agents, the relation between them has to be in one of the states— purely an

acquaintance relation, peer relation or superior-subordinate relation. For each of these

states, the possible choices of action available to the agents are:

1. ay is a pure acquaintance of ax: (i) form peerx,y; (ii) form subrx,y; (iii)

no action.

2. ay is a subordinate of ax: (i) rem subrx,y; (ii) rem subrx,y + form peerx,y (to

change to a peer relation); (iii) no action.

3. ay is a peer of ax: (i) rem peerx,y; (ii) rem peerx,y + form subrx,y (to change

to a subordinate relation); (iii) no action.

4. ay is a superior of ax: (i) rem subry,x + form subrx,y; (ii) rem subry,x +

form subrx,z (where az is a (indirect) superior2 of ay); (iii) no action.

The possible actions for transitions between the various states are further illustrated by

Fig 4.3.

Thus, three actions are possible in any state. For example, the form subrx,y action

denotes that ax and ay take the action of making ay a subordinate of ax. In this way,

2when az is an indirect superior of ax via ay, it is not possible for ax to have az as its subordinate
(since cycles of authority links in the control graph are not permitted). Hence, making az a subordinate
entails dissolving its relation with its immediate superior in the authority chain which is ay.

Chapter 4 Decentralised Structural Adaptation 52

1(ii) form_subr

4(i) rem_subr+form_subr

3 (i) rem_peer

2(i) rem_subr

1(i) form_peer

2(ii) rem_subr+form_peer

3(ii) rem_peer+form_subr

4(ii) rem_subr+form_subr

2(iii) no_action

3(iii) no_action

1(iii) no_action

4(iii) no_action

action
supr−subr
peer

ax ay

ax ay

ax ay

ayax

4. ay is supr of ax

1. ay is acqt of ax

2. ay is subr of ax

3. ay is peer of ax

Figure 4.3: State transition diagram

depending on the state, the agents jointly calculate the expected utilities for the possible

actions based on the value function and choose the action giving the maximum expected

utility in accordance with standard decision theory. The evaluation for no action will

always be 0 as it does not result in any change to the expected load or cost of the

organisation. The evaluation for the rest of the actions is obtained from the value

function (Eqn 4.1). The evaluation for the composite actions (rem subr + form peer,

rem peer + form subr or rem subr + form subr) for transition between two relations

will simply be the sum of the individual evaluations of the comprising actions. Moreover,

since any action will be taken jointly by the two agents involved, even the evaluation of

the value function is jointly conducted by the agents with each of them supplying those

attribute values that are accessible to them.

Against this background, we move on to discuss the calculation of the value function for

the various actions by detailing how the individual attributes are computed.

4.2.3 Value Function Calculation

The agent’s value function is the sum of the values of the attributes as shown in Eqn

4.1. To represent the efficiency condition of the organisation (Eqn 3.10), a reduction in

cost or load (excess load adversely affects the benefit) is considered to add positively to

the value and vice versa. Table 4.1 lists the calculation of the attributes of the value

function for each of the four atomic actions. This table uses the additional notation (in

addition to that defined in Chapter 3) that we describe below:

Chapter 4 Decentralised Structural Adaptation 53

Assignment: By assignment of a service instance to an agent, we mean that the agent

has been allocated that service instance. It must accomplish that service instance by

either executing it itself or by assigning it again to some other agent. Formally, when a

service instance sii is assigned to agent ax, then ax is considered an assigned agent for sii.

Delegation: By delegation of a service instance to an agent, we refer to the fact that

the agent is executing the particular service instance by itself (without reassigning it

to someone else). Formally, when an agent ax executes a service instance sii, it is

considered as the delegated agent for sii. Thus, there could be several assigned agents

for a particular service instance, but only one delegated agent.

1. Asgx,y: The number of service instances assigned by an agent ax to ay. Assignment

of a service instance sii by ax to ay means that ax required that sii be executed

(was assigned to ax or forms dependency of an assigned service instance of ax) and

it reallocated sii to ay. Thus ay will have to be a subordinate, peer or a superior

of ax. Also ay need not necessarily execute sii itself, it could reassign it to one of

its own subordinates, peers or superiors.

2. Delx,y: The number of service instances delegated by an agent ax to ay. Delegation

of a service instance sii by ax to ay means that ax is the agent that first required

that sii be executed (as it formed a dependency of a service instance being executed

by ax) and ay is the agent that finally executed sii (that is, ay is the delegated

agent). Note that, ay may just have a pure acquaintance relationship with ax.

The delegation is always achieved through one or more assignments.

3. C: Communication cost coefficient.

4. M: Management load coefficient.

5. R: Reorganisation cost coefficient.

6. ntot: The total number of time-steps that have elapsed since the beginning of the

run.

7. nsubr
x,y : The number of time-steps that ax and ay had a superior-subordinate relation

(that is, time-steps that 〈ax, ay, Supr〉 ∈ G) . Likewise, npeer
x,y denotes the amount

of time that ax and ay had a peer relation.

8. filledx(n): The number of time-steps out of the total time denoted by n that ax had

waiting tasks (TxW
6= φ; capacity being completely filled by load). The variable

n can represent the total time passed (ntot) or the time duration that ay was its

peer (npeer
x,y) and so on.

Chapter 4 Decentralised Structural Adaptation 54

9. Asgx,subr: The number of service instances that have been assigned by ax to any

of its subordinates. Likewise, Asgx,peer and Asgx,supr.

10. Asgx,tot: The total number of service instances that have been assigned by ax to

other agents. Therefore, Asgx,tot = Asgx,subr + Asgx,peer + Asgx,supr.

11. AsgLOAD
x,y : The management load added onto ay because of assignments from ax

(the count of these assignments is denoted by Asgx,y as stated above).

12. IAx,y: The total number of times, other agents (intermediate agents) were involved

in the delegations of service instances by ax to ay. Therefore,

IAx,y =

Delx,y∑

i

countiOA

where counti
OA

is the number of other agents involved in the delegation of sii from

ax to ay.

13. IACOST
x,y : The communication cost due to the delegations from ax to ay. For every

agent in IAx,y, a cost of 2C is added because a message is once sent forward and

once back. Therefore, IACOST
x,y = IAx,y ∗ 2 ∗ C.

14. IALOAD
x,y : The overall management load put on all the intermediate agents involved

in the delegations from ax to ay (that is, Delx,y). The load values are reported

back to ax along with the assignment information (the assignment message). If an

intermediate agent has available capacity (no waiting tasks), it will report a 0 load

value for that delegation. Otherwise, the agent will report the actual management

load that was put on it due to that service instance assignment.

Following this notation, Table 4.1 lists out how the five attributes are calculated for

each of the four basic actions. The last column in the table denotes which agent will be

performing the calculation for that particular attribute.

More specifically, Table 4.1(a) represents the form subrx,y action. When two agents,

ax and ay, need to evaluate whether forming a superior-subordinate relation will be

beneficial, they need to estimate the utility of taking such an action. As stated earlier,

this utility is obtained from the value function (Eqn 4.1). However the calculation of the

attributes, that make up the value function, varies according to the action for which they

are being calculated. Therefore, Table 4.1(a) shows how the attributes are calculated

for estimating the increase in value by taking the form subrx,y action. Similarly, Table

4.1(b) refers to rem subrx,y, Table 4.1(c) refers to form peerx,y and Table 4.1(d) refers

to rem peerx,y action.

Chapter 4 Decentralised Structural Adaptation 55

Table 4.1: Attribute functions for the reorganisation actions

(a) Action form subrx,y between agents ax and ay (with ax as the superior)

Attribute Function Agent

(i) δloadx −Asgx,tot ∗M ∗ filledx(ntot)/ntot ax

The management load that will be added on ax due to an additional subordinate. This is
estimated by counting all the assignments that ax had to perform until now and adding a
load of M for each of those. This is because, if ay had been a subordinate of ax from the
beginning, then it will have been considered for each of the assignment of ax causing an
extra load of M for every such instance. This value is then multiplied by a factor which
represents how often this increased load will affect the benefit. This factor is the amount
of time-steps that ax had waiting tasks divided by the total time. The reasoning is that
the increased load will affect the benefit of ax only when its capacity is filled.

(ii) δloady −AsgLOAD
x,y ∗ filledy(n

subr
x,y) ∗ ntot/(nsubr

x,y)2 or 0 if nsubr
x,y = 0 ay

The management load that will be added on ay due to possible assignments from ax. It
is estimated by considering the load on ay due to ax when it was a subordinate of ax

previously and multiplying it with the fraction of time that ay had waiting tasks while in
the relation and dividing it by the fraction of total time that the relation existed. Thus,
the calculated value is normalised to correspond to the total time and not the relation
time.

(iii) δloadOA IALOAD
x,y ax

The reduction in the management load on the intermediate agents that had been involved
in the delegations to ay by ax. As this load value is sent by an intermediate agent only if
it has waiting tasks, no time factor like the one in a(i) is required.

(iv) δcostcomm IACOST
x,y ax

The reduction in communication cost that was associated with the delegations to ay by
ax.

(v) costreorg −R constant

This is the reorganisation cost associated with forming or dissolving a relation. Though,
it is a one time cost, it’s affect is spread over the same time window that the rest of the
evaluations are valid.

Chapter 4 Decentralised Structural Adaptation 56

(b) Action rem subrx,y between agents ax and ay (ax is the superior)

Attribute Function Agent

(i) δloadx Asgx,tot ∗M ∗ filledx(nsubr
x,y)/nsubr

x,y ax

The management load on ax that will be reduced because ay will no longer
be a subordinate. The assignments count for the complete time is obtained
and then multiplied by the fraction of time that ax had waiting tasks while
in the relation so that the load values correspond to not just the total time
but also reflect the factor by which they will affect the benefit.

(ii) δloady AsgLOAD
x,y ∗ filledy(n

subr
x,y)/nsubr

x,y ∗ ntot/nsubr
x,y ay

The management load on ay that will reduce because it will no longer get
direct assignments from ax. It is multiplied by the fraction of time that
it had waiting tasks while in the relationship, similar to a(ii). As in that
case, since the load value correspond to the relation time only, it is divided
by the fraction of the time the relation existed so that the calculated value
corresponds to total time.

(iii) δloadOA −IALOAD
x,y ∗ ntot/(ntot − nsubr

x,y) ax

The management load that will be put on other agents for delegations to
ay from ax if it were not a subordinate of ax. It is estimated by considering
the load on intermediate agents, as in a(i), when the relation didn’t exist
and dividing by the fraction of time that the relation didn’t exist so that
the load values correspond to the total time.

(iv) δcostcomm −IACOST
x,y ∗ ntot/(ntot − nsubr

x,y) ax

The addition to the communication cost associated with the delegation
multiplied by the time fraction as in b(iii).

(v) costreorg −R constant

Similar to a(v).

Note that the negative sign, whenever present in the attribute calculations, denotes that

the value represents an increase in the load or cost. Also, the attributes are calculated

such that the resultant value for any attribute and any action is always normalised to

the total elapsed time of the simulation. Therefore, the utility of one action can be

compared directly against that of another action, thus allowing the agents to make a

decision. For this reason, the load and cost values are multiplied by time fractions such

that the final value always corresponds to the the total time elapsed. The value function

represents the expected change in the load and cost of the organisation if the particular

action is taken. Therefore, the intuition behind the attribute calculations is that the

past assignments and delegations between the two agents (ax and ay) will provide a

reasonable indication whether forming or dissolving their relation will reduce the overall

load and cost of the organisation and by how much.

Chapter 4 Decentralised Structural Adaptation 57

(c) Action form peerx,y between agents ax and ay

Attribute Function Agent

(i) δloadx −(Asgx,peer + Asgx,supr) ∗M ∗ filledx(n
tot)/ntot ax

The management load that will be added on ax due to an additional peer. It is
multiplied by the time factor similar to a(i).

(ii) δloady −(Asgy,peer + Asgy,supr) ∗M ∗ filledy(n
tot)/ntot ay

Similar to c(i).

(iii) δloadOA IALOAD
x,y + IALOAD

y,x ax and ay

The reduction in the management load on intermediate agents involved in the
delegations from ax to ay and from ay to ax.

(iv) δcostcomm IACOST
x,y + IACOST

y,x ax and ay

The reduction in the communication cost associated with the delegations in c(iii).

(v) costreorg −R constant

Similar to a(v).

(d) Action rem peerx,y between agents ax and ay

Attribute Function Agent

(i) δloadx (Asgx,peer + Asgx,supr) ∗M ∗ filledx(n
peer
x,y)/npeer

x,y ax

The management load on ax that will be reduced because ay will no longer be a peer.
Multiplied by the time fraction similar to b(i).

(ii) δloady (Asgy,peer + Asgy,supr) ∗M ∗ filledy(n
peer
y,x)/npeer

y,x ay

Similar to d(i).

(iii) δloadOA −(IALOAD
x,y ∗ ntot/(ntot − npeer

x,y) + IALOAD
y,x ∗ ntot/(ntot − npeer

y,x)) ax and ay

The management load that will be added to other agents for delegations from ax to ay

and from ay to ax. It is estimated in the same way as b(iii).

(iv) δcostcomm −(IACOST
x,y ∗ ntot/(ntot − npeer

x,y) + IACOST
y,x ∗ ntot/(ntot − npeer

y,x)) ax and ay

The increase to the communication cost because of the delegations. It is estimated in the
same way as b(iv).

(v) costreorg −R constant

Similar to a(v).

Chapter 4 Decentralised Structural Adaptation 58

Using the value function, every pair of agents jointly evaluates the utility for taking any

of the possible actions (depending on their relation) towards changing their relation,

at every time-step (though, newly formed relations are allowed to stabilise and are

re-evaluated only after a prefixed time interval). Here, joint evaluation means that

each agent supplies only some of the attribute values (as evident from the table), but

the resultant utility for the action is applicable to both; thus eliminating any possible

conflicts. Hence, this continuous adaptation in the relations helps in the better allocation

of service instances amongst the agents as they will maintain relations with only those

agents with whom they require frequent interactions.

Additionally, when an agent has two or more service instances of a particular service

waiting for execution (because of filled capacity), it will search among its acquaintances

for agents capable of performing that highly demanded service and will specifically cal-

culate the utility of forming a superior-subordinate relation with these agents. If any of

these prospective subordinates is already a peer, or a superior (including even an indirect

superior, farther up in the authority chain), the agents will calculate the value function

for the possible combination of actions permitted by their state, as earlier shown in Fig

4.3. However, while the agent calculates the utility using the table, it will also include

the possible gain from the decrease to its own load resulting from the delegation of its

future waiting load (when the relation is formed) to the proposed subordinate. Thereby,

overloaded agents can form subordinate relations with other similarly capable agents

leading to a more equitable load distribution across the organisation.

We further illustrate our reorganisation method with the help of an example.

4.2.4 Example

Consider the earlier example of the sample organisation in Fig 3.4 executing the task in

Fig 3.2. The allocation of service instances across the agents is reproduced in Fig 4.4

(explained in Section 3.2.2). Let us look at agent ax evaluating its relations at time-step

5, after the task has been completely allocated across the agents. Firstly, consider that

ax and az are evaluating their relation. According to Fig 4.3, since az is a subordinate

of ax, their relation is in state 2 with three possible actions — (i)rem subrx,z, (ii)

rem subrx,z + form peerx,z and (iii) no action. Let us first focus on how they calculate

the expected utility of rem subrx,z using Table 4.1(b).

Similar to the example in the previous chapter (Section 3.3.1), let the values of the

coefficients be:

C = 0.25 and M = 0.5 and R = 0.10

Chapter 4 Decentralised Structural Adaptation 59

subr

peerpeer

supr

assignment chain

si3

az

aw

si1 ax

si0

ay

si2

si4

Figure 4.4: Allocation and execution of the service instances by the agents

As 5 time-steps have elapsed since the start, ntot = 5. Also, we assume that all the

relations existed, as shown, from the beginning. Therefore, the time-period for any of

the existing relations (like nsubr
x,z) is also 5. Moreover, assume that the capacity of agent

ax was never filled over these 5 time-steps. Given this, let us look at the first attribute

of the value function, δloadx = Asgx,tot ∗M ∗ filledx(nsubr
x,z)/nsubr

x,z . From the Fig 4.4, we

see that ax had to perform three assignments (si1 to ay, si2 to az and si4 also to az).

Therefore, Asgx,tot = 3. However, filledx(nsubr
x,z) = 0 since ax never had any waiting tasks

over this time. Hence, δloadx = 3 ∗ 0.5 ∗ 0 = 0.

Similarly, looking at the second term δloadz , AsgLOAD
x,z = 0.5 since az had to perform

an assignment (of si2) for ax and it took up M load as az had only one subordinate

(aw). Let us assume that az’s capacity was completely filled for the last time-step (when

it started executing si4). Therefore, filledz(n
subr
x,y) = 1, while nsubr

x,z and ntot are 5 each.

Hence, δloadz = 1 ∗ 1/5 ∗ 5/5 = 1/5 = 0.20

Now, looking at the third term, we find that IALOAD
x,z = 0, since there were no delegations

from ax to az (si4 which is being executed by az was delegated by ay to az, and not ax

which had only assigned it). As a result, δloadOA = 0. Similarly, δcostcomm = 0 too.

Finally, costreorg = −0.10 as R = 0.10.

Having obtained the values of all the five attributes, the sum total of the expected utility

of action rem subrx,z = 0 + 0.20 + 0 + 0− 0.10 = 0.10.

Next, we look at the second possible transition from this state which is rem subrx,z +

form peerx,z. The evaluation for the rem subr action has already been obtained. So,

we focus on the form peer action. The first term δloadx = 0 since ax had not assigned

any service instances to any peers or superiors (Asgx,peer + Asgx,supr = 0). Similarly,

δloadz = 0 as az also did not assign to any peers or superiors. The third and fourth terms,

Chapter 4 Decentralised Structural Adaptation 60

δloadOA and δcostcomm are also 0 as above because there were no delegations between

ax and az (as described above). Adding all the terms, the expected utility of action

form peerx,z = 0+0+0+0−0.10 = −0.10. Therefore the overall utility of the composite

action of removing the subordinate and forming the peer is: 0.10 + (−0.10) = 0.

The evaluation for the third possible action (no action) is 0 by default. So comparing

the expected utilities of all the three possible transitions, agents ax and az find that

rem subrx,z provides the maximum utility (0.10) and therefore, they take that action.

Thus, the superior-subordinate link between ax and az is dissolved according to our

method. It should be noted that the values calculated here are very low because very

little time had elapsed since the beginning of the run, and these values will become

larger as time goes on and more tasks are processed by the organisation.

Continuing the example, let us consider ax and aw evaluating whether they should change

their acquaintance relation to a superior-subordinate or a peer relation according to the

transitions from state 1 in Fig 4.3. Note that this evaluation is also taking place at

time-step 5 as earlier. We first observe their form peerx,w evaluation.

Similar to the above form peer calculation, δloadx and δloadw will be 0 as neither agent

has assigned any service instances to peers or superiors. For the δloadOA calculation,

IALOAD
x,w = 0 even though there was a delegation from ax to aw (service instance si2).

This is because, the only intermediary agent az’s capacity was not completely filled

when it performed the delegation. Therefore, it reported a value of 0 to ax along

with the acknowledgement message. Also, IALOAD
w,x = 0 as aw did not delegate any

service instances to ax. However, IACOST
x,w = 1 ∗ 2 ∗ C = 1 ∗ 2 ∗ 0.25 = 0.50 because

the count of intermediate agents (IAx,w) is 1 (az). As a result, δcostcomm = 0.50

because the other term, IACOST
w,x = 0. Overall then, the expected utility of action

form peerx,w = −0− 0 + 0 + 0.50− 0.10 = 0.40.

Similarly, calculating the expected utility of the action form subrx,w also results in 0.40.

The utility of the third possible action, no action is default to 0, so the agents ax and

az can choose arbitrarily between these two actions (in this case, let us say they chose

form subr).

Finally, ax also evaluates its relation with ay by looking at the possible actions, which

are rem subrx,y, rem subrx,y + form peerx,y and no action. Their calculation of the

attributes, similar to the above, reveals an expected utility of −0.10 for rem subrx,y

and −0.20 for rem subrx,y + form peerx,y. Therefore, they chose the third alternative

no action which just has an expected utility of 0. Thus, after ax has re-evaluated all its

relations, the structure of the organisation will be as seen in Fig 4.5. The same steps

will be followed by the rest of the agents also, depending on their relations.

Chapter 4 Decentralised Structural Adaptation 61

peer peer
subrsupr

az

aw

ax

ay

Figure 4.5: Organisation structure after ax had reorganised

4.3 Summary

In this chapter, we first identified the three types of adaptation applicable to problem-

solving agent organisations. These are creating/removing the agents, changing the agent

properties and changing the structure of the organisation. Next, we listed the various

constraints and assumptions placed on the organisation framework for developing our

reorganisation method. Then, we presented our structural adaptation method using a

decision theoretic approach in the form of actions and their expected utilities that will

be used by all the agents in the organisation to modify their relations with other agents.

In conclusion, our reorganisation method guides the agent to form, change or dissolve

relations with other agents in the organisation on the basis of their history of interac-

tions. Thus, it will result in changes to the organisation structure in an attempt towards

improving the efficiency of the organisation. Clearly, our method is completely decen-

tralised as it will be adopted by all the agents in the organisation using only their local

information. Moreover, it is used by the agents throughout their existence, thus mak-

ing the adaptation a continuous process. Therefore, our method satisfies the properties

of self-organisation that we outlined in Section 2.2.1. Moreover, the method is also in

line with our third requirement, as specified in Section 1.1, referring to developing a

decentralised agent-based structural adaptation approach.

The next chapter explains the experimental conditions used for evaluating our adapta-

tion method and discusses the results obtained.

Chapter 5

Experiments and Results

This chapter discusses the various experiments conducted to evaluate the performance of

the adaptation mechanism described in previous chapter. The first section of this chapter

describes the experimental design and lists the various parameters of the simulation and

the experimental variables under observation. The next section presents and discusses

the results of the simulations. The final section summarises the chapter. This chapter

satisfies the fourth and final requirement, stated in Section 1.1, which refers to testing

and analysing the performance of our adaptation method.

5.1 Experimental Design

The purpose of the experiments is to evaluate the effectiveness of the structural adap-

tation mechanism developed for agent organisations. Since a standard is required for

comparison, in addition to our method, we also consider four other procedures for modi-

fying the organisational structure. These procedures constitute the control experiments.

They are:

1. Static: A non-reorganising approach, the structure of the organisation is not

modified during the simulation run.

2. Random: The agents randomly choose some of their relations for modification

every time-step. The rate of change of relations is based on a probability which

is inversely proportional to the number of relations they have. Thus, agents with

fewer peers (similarly subordinates) will form more peers and vice versa. This

probability was adjusted such that the overall number of changes in relations in a

simulation run is roughly equal to that of our approach on an average so that the

performance is not affected due to the aggregation of reorganisation cost.

62

Chapter 5 Experiments and Results 63

3. Central: A central agent, which is external to the organisation, is responsible

for the allocation of service instances. This agent has complete information about

the organisation including the services, capacities and current load on the agents.

When any agent needs to find another agent for allocating a service instance, it

will assign it to the central agent, who will then delegate it to the most suitable

agent (capable of the service and having the highest free capacity). Thus, every

delegation is a fixed two step process with the central agent acting as an interme-

diary. Also, the organisation can be viewed as having a star structure in which all

the agents are connected solely to this external central agent. Moreover, since this

central agent is external, it is assumed to have infinite capacity and neither does

it contribute to the load, benefit or cost calculations of the organisation.

4. Oracle: Instead of a single, central external agent as above, we assume that

every agent has complete information about the organisation and so performs the

best allocation of service instances possible. However in this case, the agents are

assumed to not incur any load for their allocation actions (M = 0). Thus, as all

the delegations are a one-step process without causing any management load, this

approach acts as an upper bound for our evaluation.

We selected these four approaches because they sufficiently cover the main possibilities

of reorganisation and task allocation mechanisms. Two of them (Random and Static)

represent reorganisation (or the lack of) approaches, while the other two (Central and

Oracle) represent complete-information based approaches for task allocations. More-

over, while Central represents a modified standard non-robust method and the Oracle

procedure represents a clear upper bound, it is not obvious whether Random or Static is

the lower bound and therefore we use both of them. For ease of reference, we shall call

our adaptation procedure ‘Smart’. Agents in the Smart, Static and Random procedures

follow the same algorithm for task allocation as detailed in Section 3.2.2, while those

in the Central and Oracle procedures follow their individual methods detailed as above.

However, the agents in all the procedures are similar in all the other aspects (like task

execution, communication, capacities and so on). We evaluate the effectiveness of the

the procedures on the basis of the efficiency of the organisations which is determined

by the average cost and benefit (see Section 3.3) of the organisation for a simulation

run. Thus, costORG and benefitORG are the two experimental data variables of interest.

However, there are many other variables that need to be assigned values before running

the experiments. Next, we discuss the values that are assigned to these parameters of

the simulations.

Chapter 5 Experiments and Results 64

5.1.1 Simulation Parameters

Simulation parameters are the attributes of the environment which are controlled ac-

cording to the experiments. In our case, the simulation parameters include the set of

services, set of agents, set of tasks, the initial organisation structure (at the beginning of

simulation), the time period of the simulation and the environmental coefficients. While

some of these parameters are assigned a constant value for all simulations, the others

are varied across simulations. More specifically Table 5.1 lists the constant values or

the fixed ranges assigned to some of the simulation parameters. The parameters listed

in this table are applicable to all the simulations conducted. However, there are other

parameters that are varied across simulations to observe their effect on the experimental

variables (costORG and benefitORG). These are discussed below:

• Distribution of services across agents: After deciding the number of agents

and services for a particular simulation, the next step is to distribute these services

among the agents. The two extreme possibilities are: (i) each agent is capable of a

unique set of services and (ii) all agents are capable of all services. To model this,

the services are allocated to the agents on the basis of a probability called service

probability (SP). That is, an agent ax is allocated a service si with a probability

SP . Thus, when SP is 0, every agent is capable of a unique service only (as every

agent should offer at least one service and every service should be offered by at

least one agent). When it is 1, every agent is capable of every service. Since the

services are allocated on basis of a probability, there is always randomness in the

way the services are allocated to the agents. In our experiments, we vary SP from

0 to 0.5 only (as we found that beyond 0.5, the agents are quite homogeneous and

the organisation structures did not influence the performance significantly).

• Similarity between tasks: As discussed in Section 2.1.1, the tasks presented to

the organisation over the period of a simulation run may be completely unrelated

or somewhat repetitive in nature. In our model, similarity between tasks means

that they may have some common service instances and dependency links. We

control the similarity between the tasks belonging to the same simulation run on

the basis of what we call patterns; stereotypical task components used to repre-

sent frequently occurring combinations of service instances and dependency links.

Therefore, they are also composed of service instances, like tasks, but are generally

smaller in size. So, instead of creating tasks by randomly creating dependency links

Di between the service instances, tasks can be constituted by connecting some pat-

terns by creating dependency links between the service instances belonging to the

patterns. In this way, the dependencies between the service instances may follow

some frequent orderings (resulting from the dependencies internal to a pattern as

Chapter 5 Experiments and Results 65

the pattern may occur in several tasks) and some random dependencies (due to

the dependencies created across the patterns). Thus, this method of generation

enables us to control the similarity between the tasks using the number of patterns

(NoP) as the parameter. In our experiments, we vary NoP from 1 (all tasks are

composed of the same pattern repeated multiple times leading to a high degree

of similarity) to 10 (several different patterns interlinked leading to low similarity

across tasks). We limit at 10 because in our tasks, the maximum number of service

instances is 20, and therefore, with too many patterns, there is no distinguishable

occurrence of frequent dependencies and it is equivalent to having no patterns.

Moreover, we also conducted a set of experiments with NoP set to 0 (tasks are

completely dissimilar).

We consider that the similarity between the tasks is an interesting parameter

to vary because it will provide us insights into how well our adaptation method

performs in different kinds of task environments. This is an important factor

for evaluation because our method is based on the past interactions between the

agents which are, in turn, related to their past task allocations and executions.

Moreover, presence of similarities between tasks is an existing phenomenon in the

real world. When tasks of several kinds are received by a system, often, the tasks

comprise of parts that are common across the different tasks. For example if the

tasks are about constructing different cars, they will have some common sub-tasks

like making a wheel, a windshield etc. Similarly, if the tasks are related to cooking,

many of them may be composed of common sub-tasks like boiling potatoes, dicing

carrots, marinating meat etc.

Against this background, we next discuss our hypotheses and that the experiments we

carried out.

5.1.2 Hypotheses and Experiments

The controlled parameters of the environment which we predict will have a direct bearing

on the performance are the ones described earlier in this section, namely, distribution

of services across the agents and similarity of tasks. More specifically, we present two

hypotheses about the factors influencing the effectiveness of structural adaptation:

1. The effectiveness of structural adaptation depends on the heterogeneity of the

services of the agents. Specifically, structural reorganisation will be more effective

on specialised agents than on homogeneous ones.

1We experimented with small tasks having a maximum of 10 service instances and large tasks with
50 service instances and found the results to be similar to having tasks with 20 service instances

Chapter 5 Experiments and Results 66

Table 5.1: Values of the simulation parameters

Parameter Symb Value assigned Justification
Number of agents |A| chosen from a uni-

form distribution
between 4 – 20

Organisations generally have at least 4 members. We
chose 20 as the upper limit because we found that
when number of agents is greater than 20, the simu-
lations are considerably slower because of the con-
straint that all agents in the organisation are ac-
quaintances of each other leading to θ(|A|2) complex-
ity for a single simulation time-step.

Initial organisation
structure

G randomly gener-
ated

Since we experiment with thousands of runs and hun-
dreds of tasks in each run, the initial structure will
not carry much significance.

Number of services |S| equal to |A| The number of services possible is equal to the num-
ber of agents as the number of services matter only
in terms of their distribution across the agents.

Computational rate
of a service instance

pi chosen from a uni-
form distribution
between 1 – 10

This values determines the other values like capacity,
so we decided to give it a standard range.

Capacity of an
agent

Lx chosen from a uni-
form distribution
between 11 – 30

Minimum is set to 11 so that the maximum compu-
tational rate is always less than the capacity. Maxi-
mum is set at 30 so that agents’ capacities are filled
up occasionally with 3 or 4 service instances.

Number of time-
steps for a service
instance

ni chosen from a geo-
metric distribution
(with p value set to
0.7) between 4 – 30

There will be a large number of service instances with
small time requirements (≤ 10) and some service in-
stances with high time requirements. Thus, the task
environment is quite dynamic but doesn’t fluctuate
too rapidly.

Arrival agent of a
task

ax randomly chosen
from the set of
agents A

The tasks enter the organisation, randomly, at any
agent

Number of service
instances per task

|si| chosen from a uni-
form distribution
between 1 – 20

An upper limit of 20 is set so that the tasks do not
become too bulky1.

Number of tasks
per simulation

|T | 100 and 200 Sufficient to load the organisation for meaningful re-
sults.

Time period of sim-
ulation

1000 time-steps Sufficient amount of time for the obtaining meaning-
ful results.

Start time of a task chosen from a uni-
form distribution
between 1 – 1000

Since the tasks will be different with different ser-
vice instances and dependencies, the incoming time
of tasks is not very important.

Communication
cost coefficient

C 0.25 For our present purposes, C is fixed at this value

Management load
coefficient

M 0.50 So that management causes more load than message
passing but less than actual service instance execu-
tion

Reorganisation cost
coefficient

R 0 Currently, we set it to 0, so that the reorganisation
process is not hindered by the cost of reorganising.

Maximum pattern
size

1
3
|si| In the experiments where patterns are used, it is

set to one-third of the maximum number of service
instances in a task so that, in general, tasks need
around three patterns.

Chapter 5 Experiments and Results 67

2. The effectiveness of structural adaptation depends on the similarity between the

tasks faced by the organisation. Structural reorganisation will be more effective if

there is a high degree of similarity between the tasks.

The first hypothesis is reasonable because, in scenarios where the agents have very

similar service sets, changing their relations will not result in much difference in terms

of the connectivity between the different services, as the new relations will be connecting

the same service sets as the old ones (as all agents have almost the same service sets).

Similarly, if the tasks coming in to the organisation do not have any kind of similarity,

then reorganisation by modifying the structure will not be very useful because there are

no particular characteristics of the tasks that can be exploited through adaptation.

The controlled parameters of the environment which we predict will have a direct bear-

ing on the costORG and benefitORG are the ones described above— service probability

(SP) and number of patterns (NoP). The rest of the parameters are either kept con-

stant or randomly generated as specified in Table 5.1. We ran different experiments by

varying one of the controlled parameters and keeping the other constant, to study the in-

dividual relationship between the parameters and the performance of the reorganisation

procedures. Given this, we now list the different experiments that have been conducted:

1. Service probability (SP) is increased from 0 to 0.5 in steps of 0.1 with NoP set

equal to 0 and 5 for organisations facing both 100 and 200 tasks.

2. Number of patterns (NoP) is varied from 1 to 10 with service probability fixed at

0 and 0.5 for organisations facing both 100 and 200 tasks.

The experiments are conducted by running simulations with the parameters set as de-

scribed. For every simulation run, the set of services and agents is generated and then

services are assigned to the agents on basis of the service probability SP . Next, the set of

tasks is generated based on the number of patterns NoP and other parameters specified

earlier. Then, an initial organisation structure is randomly generated from the set of

agents and the simulation is run with this organisation executing the tasks. The average

cost and benefit of that organisation for that simulation run is obtained by taking the

average of the costORG and benefitORG values that are generated at every time-step. The

same simulation with the same task set and organisation structure (including the agents)

is run for all the five reorganisation procedures (Smart, Random, Static, Central and

Oracle). We conducted the experiments by running 1000 simulations runs (generating a

new set of tasks and organisation each time) for every data point to achieve statistically

significant results. Since the the 95% confidence intervals of the plotted means of Smart

do not overlap with Oracle, Random or Static, we claim that our results are statistically

significant.

Chapter 5 Experiments and Results 68

In the next section, we discuss and analyse the results obtained from the experiments.

5.2 Results

We present our results in the form of graphs plotting the cost and benefit values for all

the five procedures. A better performance is reflected in a high benefit and a low cost

result. As specified earlier, we conducted two sets of experiments— (i) organisations

performing 100 tasks in a simulation run and (ii) organisations performing 200 tasks in

a simulation run. We chose these two different sets to examine the possible change in

performance of organisations that are moderately loaded and highly loaded.

We first discuss the experiments on moderately loaded organisations (100 tasks); Figs

5.1, 5.2, 5.3 and 5.4 display the results for organisations performing 100 tasks in a

simulation run. In more detail, in Figs 5.1 and 5.2, the service probability increases

along the x-axis from 0 (when all agents have a unique service set) to 0.5 (when every

agent is capable of approximately half of the services). More specifically, Fig 5.1(a)

and 5.1(b) display the cost and benefit when the tasks are highly similar (made up of

5 patterns only, NoP = 5), while in Fig 5.2(a) and 5.2(b) the tasks are completely

dissimilar (not made of patterns, NoP = 0). For all the five reorganisation procedures,

we see that the cost decreases as the similarity of the agents increases (see Figs 5.1(a)

and 5.2(a)). This is because, as agents have increasingly similar service sets, most service

instance delegations will require one assignment step only, as any agent will be capable

of most services. However, considering both cost and benefit, we find that the Oracle

outperforms all the other methods significantly, thus justifying our choice of an upper

bound. Also, the Static and Random methods perform worse than the rest as neither

do they adapt intelligently, nor do they use a centralised allocation mechanism. More

importantly, we see that the performance of our method is very close to the Central

strategy on both the occasions, thus showing that our method, which is decentralised in

nature, succeeds in adapting the organisation structures that, in turn, leads to efficient

allocation of tasks. Another interesting result is that the difference in the performance

of all the methods is more apparent when the tasks are highly similar (when NoP = 5).

This is because the organisation structure has more influence over the performance for

similar tasks as a good structure, in such cases, leads to an efficient task allocation and

vice versa.

Similar trends are also observed when the dissimilarity between tasks is increased along

the x-axis (see Figs 5.3 and 5.4). The huge drop in benefit for all methods, seen in Fig

5.3(b) (the range has been limited to -40 for better readability, the complete graph can

be seen in Fig 5.2) when the tasks are highly similar, occurs because the tasks are made

up of only one pattern leading to a high demand for a few services. However, since the

Chapter 5 Experiments and Results 69

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5

A
vg

 O
rg

an
is

at
io

n
C

os
t

Service Probability

Average Organisation Cost vs Service Probability when NoP=5

smart
random
central

static
oracle

(a) Cost when NoP=5

-15

-10

-5

 0

 5

 10

 15

 0 0.1 0.2 0.3 0.4 0.5

A
vg

 O
rg

an
is

at
io

n
B

en
ef

it

Service Probability

Average Organisation Benefit vs Service Probability when NoP=5

smart
random
central

static
oracle

(b) Benefit when NoP=5

Figure 5.1: Average cost and benefit as similarity between agents increases for organ-
isations facing highly similar 100 tasks

Chapter 5 Experiments and Results 70

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5

A
vg

 O
rg

an
is

at
io

n
C

os
t

Service Probability

Average Organisation Cost vs Service Probability when NoP=0

smart
random
central

static
oracle

(a) Cost when NoP=0

-15

-10

-5

 0

 5

 10

 15

 0 0.1 0.2 0.3 0.4 0.5

A
vg

 O
rg

an
is

at
io

n
B

en
ef

it

Service Probability

Average Organisation Benefit vs Service Probability when NoP=0

smart
random
central

static
oracle

(b) Benefit when NoP=0

Figure 5.2: Average cost and benefit as similarity between agents increases for organ-
isations facing dissimilar 100 tasks

Chapter 5 Experiments and Results 71

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10

A
vg

 O
rg

an
is

at
io

n
C

os
t

Number of Patterns

Average Organisation Cost vs Similarity between Tasks when SP=0

smart
random
central

static
oracle

(a) Cost when SP=0

-40

-30

-20

-10

 0

 10

 1 2 3 4 5 6 7 8 9 10

A
vg

 O
rg

an
is

at
io

n
B

en
ef

it

Number of Patterns

Average Organisation Benefit vs Similarity between Tasks when SP=0

smart
random
central

static
oracle

(b) Benefit when SP=0

Figure 5.3: Average cost and benefit as similarity between tasks decreases for organ-
isations with unique agents facing 100 tasks

Chapter 5 Experiments and Results 72

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10

A
vg

 O
rg

an
is

at
io

n
C

os
t

Number of Patterns

Average Organisation Cost vs Similarity between Tasks when SP=0.50

smart
random
central

static
oracle

(a) Cost when SP=0.50

-60

-50

-40

-30

-20

-10

 0

 10

 1 2 3 4 5 6 7 8 9 10

A
vg

 O
rg

an
is

at
io

n
B

en
ef

it

Number of Patterns

Average Organisation Benefit vs Similarity between Tasks when SP=0.50

smart
random
central

static
oracle

(b) Benefit when SP=0.50

Figure 5.4: Average cost and benefit as similarity between tasks decreases for organ-
isations with highly similar agents facing 100 tasks

Chapter 5 Experiments and Results 73

-180

-160

-140

-120

-100

-80

-60

-40

-20

 0

 1 2 3 4 5 6 7 8 9 10

A
vg

 O
rg

an
is

at
io

n
B

en
ef

it

Number of Patterns

Average Organisation Benefit vs Similarity between Tasks when SP=0

smart
random
central

static
oracle

Figure 5.5: Fig 5.3(b) with the full y range

agents are unique, each of those services will be provided by one agent only, resulting

in the overloading of those agents. This drop in benefit is less pronounced in Fig 5.4(b)

because, here the agents have overlapping service sets and therefore a better distribution

of load takes places. It is also interesting to note that our method performs significantly

better than Central when the agents have unique service sets. This is because, the extra

information possessed by the central agent about the load on agents is not really useful

in these cases because only one agent is capable of any service and has to be allocated

those corresponding service instances irrespective of the load on it. At the same time,

one step delegations are possible in our method while the central method always requires

a two-step delegation (with the central allocator as the intermediary), thus leading to a

better performance of our method. Also, we see that there is a larger difference in costs

across the five methods when the agents are unique (Fig 5.3(a)) than when the agents

are similar (Fig 5.4(a)). This is because, as the cost is affected only by the length of the

assignment chains, when the agents have similar sets, most service instances allocations

are one step delegations irrespective of the structure (since most agents provide most

services) and therefore the communication cost is low regardless of the reorganisation

method.

With respect to our first hypothesis, in both Figs 5.1(b) and 5.2(b), we see that the

difference in the benefits between Smart and Random is greater when SP = 0 than

when SP = 0.5, thus demonstrating our hypothesis that structural adaptation is more

effective when agents are unique. Moreover, our method performs better than Central

when agents are unique and vice versa further supporting our hypothesis. Similarly, in

Chapter 5 Experiments and Results 74

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5

A
vg

 O
rg

an
is

at
io

n
C

os
t

Service Probability

Average Organisation Cost vs Service Probability when NoP=5

smart
random
central

static
oracle

(a) Cost when NoP=5

-200

-150

-100

-50

 0

 0 0.1 0.2 0.3 0.4 0.5

A
vg

 O
rg

an
is

at
io

n
B

en
ef

it

Service Probability

Average Organisation Benefit vs Service Probability when NoP=5

smart
random
central

static
oracle

(b) Benefit when NoP=5

Figure 5.6: Average cost and benefit as similarity between agents increases for organ-
isations facing highly similar 200 tasks

Chapter 5 Experiments and Results 75

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5

A
vg

 O
rg

an
is

at
io

n
C

os
t

Service Probability

Average Organisation Cost vs Service Probability when NoP=0

smart
random
central

static
oracle

(a) Cost when NoP=0

-200

-150

-100

-50

 0

 0 0.1 0.2 0.3 0.4 0.5

A
vg

 O
rg

an
is

at
io

n
B

en
ef

it

Service Probability

Average Organisation Benefit vs Service Probability when NoP=0

smart
random
central

static
oracle

(b) Benefit when NoP=0

Figure 5.7: Average cost and benefit as similarity between agents increases for organ-
isations facing dissimilar 200 tasks

Chapter 5 Experiments and Results 76

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10

A
vg

 O
rg

an
is

at
io

n
C

os
t

Number of Patterns

Average Organisation Cost vs Similarity between Tasks when SP=0

smart
random
central

static
oracle

(a) Cost when SP=0

-400

-350

-300

-250

-200

-150

-100

-50

 0

 50

 1 2 3 4 5 6 7 8 9 10

A
vg

 O
rg

an
is

at
io

n
B

en
ef

it

Number of Patterns

Average Organisation Benefit vs Similarity between Tasks when SP=0

smart
random
central

static
oracle

(b) Benefit when SP=0

Figure 5.8: Average cost and benefit as similarity between tasks decreases for organ-
isations with unique agents facing 200 tasks

Chapter 5 Experiments and Results 77

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10

A
vg

 O
rg

an
is

at
io

n
C

os
t

Number of Patterns

Average Organisation Cost vs Similarity between Tasks when SP=0.50

smart
random
central

static
oracle

(a) Cost when SP=0.50

-400

-350

-300

-250

-200

-150

-100

-50

 0

 50

 1 2 3 4 5 6 7 8 9 10

A
vg

 O
rg

an
is

at
io

n
B

en
ef

it

Number of Patterns

Average Organisation Benefit vs Similarity between Tasks when SP=0.50

smart
random
central

static
oracle

(b) Benefit when SP=0.50

Figure 5.9: Average cost and benefit as similarity between tasks decreases for organ-
isations with highly similar agents facing 200 tasks

Chapter 5 Experiments and Results 78

Figs 5.3(b) and 5.4(b), we find that Smart and Random come closer in performance when

the number of patterns is increased along the x-axis. Therefore, this demonstrates our

second hypothesis that structural adaptation is more useful when the tasks are similar

(fewer number of patterns) than otherwise.

As stated earlier, we have also experimented by increasing the workload on the organisa-

tion by supplying it with 200 tasks over the same 1000 time-steps. In this case, we find

that the resultant trends are similar to those in organisations faced with 100 tasks. That

is, the earlier comparison between the different reorganisation procedures is still valid

when the organisations are overloaded. If any, the difference in the performance between

the different methods is more pronounced in this case, as the advantage of an efficient

structure over an inefficient one is highlighted when more and more tasks are performed.

The only difference between the two sets of experiments is that our method does not

perform significantly better than the Central when the agents have unique service sets

(Fig 5.8(b)) unlike the earlier case (Fig 5.3(b)). This is because the overloaded agents

(due to the high number of tasks) in our method will keep searching, unsuccessfully, for

subordinates to reassign their service instances which then leads to more management

load. However, in such cases, they are not able to assign the service instances to any-

one else because the agents are unique and only one of them is capable of a particular

service. On the other hand, in the Central method, the central allocator will make the

delegations and the agents do not use up their capacity searching for the other agents

for reassignment.

In summary, we find that our reorganisation method always performs better than a ran-

dom reorganisation or a non-reorganising approach. Furthermore, our method performs

similarly to the approach based on an external omniscient central agent performing the

allocations.

5.3 Summary

In this chapter, we presented the experimental setup used for testing our structural

adaptation mechanism and comparing it against organisations without reorganisation,

those employing a random reorganisation strategy, those employing an external central

omniscient allocator and those having omniscient agents which do no incur any manage-

ment load for allocations. From our experiments, we found that our mechanism always

performed better than the non-reorganising and randomly reorganising approaches. Fur-

thermore, its performance was comparable to the organisations with the central external

agent. Therefore, it is evident that our method is successful in improving the efficiency

of the organisation and brings its performance closer to that of a centralised infinitely

Chapter 5 Experiments and Results 79

resourceful allocator than a randomly adapting or a non-adapting organisation. There-

fore, we claim that our adaptation mechanism satisfies the requirement of developing

a decentralised agent-based structural adaptation method for improving the efficiency

of problem-solving organisations. However, our method currently functions only in a

constrained environment and this provides several directions for future work.

In the next chapter, the long term goals of this research are detailed along with a time-

line for the final thesis.

Chapter 6

Conclusions and Future Work

This report describes our approach to the problem of developing decentralised structural

adaptation mechanisms for problem-solving agent organisations based on the paradigm

of self organisation. We started by examining the existing models for depicting agent or-

ganisations (Section 2.1) and also studied the various self-organisation approaches being

applied in multi-agent systems (Section 2.2). More specifically, we focused on the cur-

rent adaptation methods for agent organisations and highlighted the deficiencies of the

present approaches, mainly that none of them provide a robust decentralised method for

purely modifying the organisation structure in order to improve the performance of the

organisation. We went on to define a simple organisation model (Chapter 3) to serve as

a framework for developing structural adaptation methods. The model comprised a task

environment with a continuous stream of tasks which are made up of service instances

containing dependencies among themselves and an organisation of agents that are ca-

pable of providing the required services to accomplish the tasks. The agents are related

to each other on the basis of the organisation structure. The agent relations, which are

defined by the organisation structure, also determine the possible interactions between

the agents. Then, we presented our structural adaptation method (Section 4.2) using a

decision theoretic approach in the form of actions and their expected utilities that will

be used by all the agents in the organisation to modify their relations with other agents.

This reorganisation mechanism is based on the history of task allocations by the agents

and results in the structural modification of the organisation. Finally, we conducted sets

of experiments (Section 5.1) to investigate the effectiveness of this method by comparing

it against four other reorganisation procedures. Analysing the results (Section 5.2), we

found that our method performed significantly better than a non-reorganising approach

or a randomly reorganising approach. Moreover, the performance of the organisations

employing our method was comparable to those using an external omniscient agent for

allocation of tasks. Therefore, our decentralised adaptation method was successful in

80

Chapter 6 Conclusions and Future Work 81

improving the efficiency of problem-solving organisations by appropriately modifying

the organisation structure.

Looking back at the research objectives (stated in Section 1.1) of this work, we see

that we have made good progress towards addressing the first and second requirements

by creating a simple model of a problem-solving agent organisation and an evaluation

mechanism that calculates efficiency via the cost and benefit of the organisation. With

respect to the third requirement, we have developed a completely decentralised structural

adaptation method that improves the efficiency of the organisation. Finally, we have

also addressed the last requirement by carrying out an analysis of the performance of

our method under different experimental conditions. As a result of working towards

these requirements, we have succeeded in advancing the state of the art in the domain

of problem-solving agent organisations by developing a novel decentralised structural

adaptation method for improving the efficiency of such organisations in a constrained

environment. Nevertheless, we need to further extend our work so that we make a fuller

contribution by developing a more comprehensive and sophisticated approach.

Next, we analyse the shortcomings of our structural adaptation method to help uncover

avenues for future work to achieve our objectives.

6.1 Future Work

Since, we have attempted to satisfy the research objectives of this report by making

several assumptions and placing some constraints on the model, it provides us with

scope for more work in the future. By critically analysing our adaptation mechanism,

in its current form, we can identify a few potential shortcomings:

• The method is primarily designed with the assumption that the tasks coming in

the future are somewhat similar to the tasks in the past. In the worst case scenario,

if the tasks have contrasting dependency graphs, then reorganisation on the basis

of past task assignments may not be very useful since the tasks in the future may

require completely different assignment patterns. Moreover, the method does not

utilise any information about the task environment (if provided) to be proactive

and make anticipatory changes to the structure.

• The method requires that every pair of agents evaluate their relation at every time-

step making it an inefficient process as most of the relations will remain unchanged

over reasonably moderate periods of time.

Chapter 6 Conclusions and Future Work 82

• The adaptation is carried out by pairs of agents modifying their inter-relations.

However, the method fails to directly look at possible reorganisation actions in-

volving more than two agents, and therefore, more than one relation at the same

time.

The first drawback is mainly an effect of the task environment which does not provide

any preliminary information to the agents. We do not intend to directly tackle this issue

but will persist with developing adaptation methods that are not specialised for any

particular type of task environments. Taking into account the other two drawbacks and

some of the constraints earlier placed on the model (see Section 4.2.1), we divide the

future work into three stages as shown in Fig 6.1.

6.1.1 Task 1: Efficient Structural Adaptation

The first stage involves coming up with an efficient algorithm for structural adaptation

(Item 3 of Task 1). As discussed above, the current method is O(n2), that is, quadratic

in the number of agents as every agents needs to look at all its relations at every time-

step. Therefore, we should develop a mechanism using which the agents will be able to

prioritise their relations. Using this priority ranking, an agent will need to re-evaluate

only a small subset of its relations at a time-step, thereby making the adaptation pro-

cess more computationally efficient. At the same time, we also want to apply a different

mechanism for the evaluation of the organisations to more rigorously verify the perfor-

mance of our method (Item 1 of Task 1). Unlike the current efficiency evaluation which

is based on the benefits and costs garnered by the individual agents, the new evaluation

mechanism will be completely separated from the agents and be purely based on the

completion time of the tasks. Furthermore, we also intend to relax the constraints placed

on the environment and conduct experiments by varying the communication cost and

management load coefficients to test how our reorganisation method copes with these

changes (Item 2 of Task 1).

6.1.2 Task 2: Structural Adaptation in Dynamic Organisations

The other primary constraints currently placed on the framework, for developing our

adaptation mechanism, are that the agents are invariant and the organisation is closed

(no new agents enter or old agents leave). The second stage of the future work involves

relaxing these two constraints. We will first try to enhance our method so that the

structure of the organisation is able to adapt when the service sets of the agents are

varying in the course of a simulation run (Item 1 of Task 2). Following that, we aim

Chapter 6 Conclusions and Future Work 83

to extend it to cope with dynamic organisations which have agents entering and leaving

the system (Item 2 of Task 2).

6.1.3 Task 3: Multi-step Structural Adaptation

The final stage of future work will address the last drawback listed above. We intend

to develop a multi-step adaptation approach which works by involving three or more

agents at the same time and therefore resulting in multiple steps of restructuring. This

approach will require some kind of planning on the part of the agents so that they

are able to look ahead and carry out a sequence of reorganisation actions. We will

first develop such an approach for the constrained model of a closed organisation with

invariant agents (Item 1 of Task 3) and later extend it to dynamic organisations (Item

2 of Task 3).

In conclusion, our future work aims to developed a sophisticated and comprehensive

decentralised agent-based structural adaptation mechanism that aids in the improvement

of the efficiency of problem-solving agent organisations in dynamic environments.

Chapter 6 Conclusions and Future Work 84

Figure 6.1: Time line for future work

Appendix A

Glossary

1. Service: We define a service as a specialised atomic action that can be executed

by an agent. S is defined as the set of services provided by an organisation.

2. Service instance: An instance of a specific service has three parameters. It

specifies the type of service required, the computational rate required and the total

number of time-steps for which it is required. Hence, we define a service instance

to be sii = 〈si, pi, ni〉 where si ∈ S, pi ∈ N denotes the amount of computation

required per time-step and ni ∈ N denotes the total time-steps it is required. SI

denotes the set of all service instances of all tasks.

3. Dependency: A service instance is said to be dependent on another service in-

stance when the output of the latter is required by the former. Hence the execution

of the former cannot begin until the execution of latter is finished. It is represented

formally in the dependency links graph.

4. Dependency links: The set of dependency links Di contains links between the

various sij of the task. These links are directed arcs between any two service

instances depicting the dependency of the source on the destination. An element dj

of Di is of the form dj = 〈six, siy〉 where six and siy are the origin and destination

of the link.

5. Task: A task is composed of a number of service instances with a precedence

order. It is defined as a tuple containing a set of service instances and a set of

dependency links between the service instances. ti = 〈{sij ∈ SI, j ∈ N},Di〉 (Eqn

3.1).

6. Agent: Agents are independent computational entities capable of providing ser-

vices. Every agent has two parameters, a set of services that it can provide and a

computational capacity. Let A be the set of agents. Every element of A is of the

85

Appendix A Glossary 86

form ax = 〈Sx, Lx〉 where Sx ∈ S denotes the services set of the agent and Lx ∈ N

represents the computational capacity (Eqn 3.2).

7. Computational capacity: This is defined as the maximum computational load

that an agent can undertake in a single time-step. It is denoted by Lx for agent

ax.

8. Acquaintance relation: All agents whose presence is known to an agent consti-

tute the acquaintances of that agent. Acquaintance relations are formally repre-

sented by the Acqt link in the organisation graph.

9. Superior-subordinate relation: An agent is the superior of another agent if

the agent has a superior-subordinate relation with the other agent. The superior

has a Supr link to its subordinate in the organisation graph.

10. Peer relation: Two agents are considered peers if they have a peer relation

between them. Peer relations are formally represented by the Peer links in the

organisation graph.

11. Accumulated service set: The accumulated service set of an agent is the union

of its own service set and the accumulated service sets of its subordinates, recur-

sively. For an agent ax, it is denoted by ASx.

12. Organisation graph: The relationships between the agents in an organisation

are represented in a organisation graph G. Every link ri that belongs to G is of the

form ri = 〈ax, ay, typei〉 where ax and ay are agents that the link originates and

terminates respectively and typei denotes the type of link and it can take values

{Acqt, Supr, Peer} representing the three types of relations possible (Eqn 3.4).

13. Organisation: The Organisation consists of the set of agents and a set of or-

ganisational links. Therefore, it can be represented by a 2-tuple of the form

ORG = 〈A,G〉 where A is the set of agents and G is the set of directed links

between the agents (Eqn 3.3).

14. Communication cost coefficient: This denotes the cost in terms of the amount

of resource required by the network to transmit one message between two agents.

It is denoted by C

15. Management load coefficient: This denotes the amount of computation that

is spent by an agent for evaluating whether a particular agent could be assigned a

particular service instance. It is denoted by M

16. Cost of an agent: It denotes the amount of resource used up by the system for

transmitting the messages of an agent. It is calculated for every time-step. The

cost of an agent ax is costx = C.cx where cx is the number of messages sent by the

agent ax (Eqn 3.5).

Appendix A Glossary 87

17. Cost of the organisation: The cost of the organisation is the total amount of

computational units utilised by the network for the transmission of the messages

between the agents. It is calculated for every time-step:

costORG = C.

|A|∑

x=0

cx

(Eqn 3.6)

18. Benefit of an agent: It denotes the reward gained by the organisation due to an

agent. It is calculated for every time-step. The benefit of an agent at a time-step

is equal to the total amount of computation of the service instances being executed

by that agent subtracted by the amount of computation required by the service

instances that are waiting to be executed or allocated by the agent. Therefore, the

benefit of agent ax:

benefitx =

|TxE
|∑

i=0

eix −

|TxW
|∑

i=0

eix

TxE
is the set of tasks being executed by the agent and TxW

is the set of tasks

waiting for allocation or execution by the agent. eix in each case represents the

sum of the computational rates of the service instances of the task ti that are being

executed or waiting at the agent ax (Eqn 3.8).

19. Benefit of the organisation: It denotes the overall reward gained by the or-

ganisation. It is calculated as the sum of the rewards obtained by the individual

agents:

benefitORG =

|A|∑

x=0

benefitx

(Eqn 3.9).

20. Efficiency of the organisation: It denotes the overall performance of the or-

ganisation. It is denoted as efficiencyORG = benefitORG − costORG (Eqn 3.10)

21. Reorganisation cost coefficient: It denotes the cost of forming or dissolving a

relation between two agents. It is denoted by R.

22. form subrx,y: It denotes the action of forming a superior-subordinate relation be-

tween agents ax and ay, with ax as the superior.

23. rem subrx,y: It denotes the action of dissolving a superior-subordinate relation

between agents ax and ay where ax was the superior.

24. form peerx,y: It denotes the action of forming a peer relation between agents ax

and ay.

Appendix A Glossary 88

25. rem peerx,y: It denotes the action of dissolving a peer relation between agents ax

and ay.

26. Assignment: By assignment of a service instance to an agent, we mean that the

agent has been allocated that service instance. It must accomplish that service

instance by either executing it itself or by assigning it again to some other agent.

Formally, when a service instance sii is assigned to agent ax, then ax is considered

an assigned agent for sii.

27. Delegation: By delegation of a service instance to an agent, we refer to the

fact that the agent is executing the particular service instance by itself (without

reassigning it to someone else). Formally, when an agent ax executes a service

instance sii, it is considered as the delegated agent for sii. Thus, there could be

several assigned agents for a particular service instance, but only one delegated

agent.

28. Value function: It denotes the function that gives the values of the expected

utilities of performing a reorganisation action between agents ax and ay. It depends

on the estimated change in the load and costs of the two agents in question and the

other agents involved in the delegations between these two agents. It is calculated

as:

V = δloadx + δloady + δloadOA + δcostcomm + costreorg (A.1)

(Eqn 4.1)

29. Asgx,y: The number of service instances assigned by an agent ax to ay.

30. Delx,y: The number of service instances delegated by an agent ax to ay.

31. ntot: The total number of time-steps that have elapsed since the beginning of the

run.

32. nsubr
x,y : The number of time-steps that ax and ay had a superior-subordinate relation

(that is, time-steps that 〈ax, ay, Supr〉 ∈ G) . Likewise, npeer
x,y denotes the amount

of time that ax and ay had a peer relation.

33. filledx(n): The number of time-steps out of the total time denoted by n that ax had

waiting tasks (TxW
6= φ; capacity being completely filled by load). The variable

n can represent the total time passed (ntot) or the time duration that ay was its

peer (npeer
x,y) and so on.

34. Asgx,subr: The number of service instances that have been assigned by ax to any

of its subordinates. Likewise, Asgx,peer and Asgx,supr.

35. Asgx,tot: The total number of service instances that have been assigned by ax to

other agents. Therefore, Asgx,tot = Asgx,subr + Asgx,peer + Asgx,supr.

Appendix A Glossary 89

36. AsgLOAD
x,y : The management load added onto ay because of assignments from ax

(the count of these assignments is denoted by Asgx,y as stated above).

37. IAx,y: The total number of times, other agents (intermediate agents) were involved

in the delegations of service instances by ax to ay. Therefore,

IAx,y =

Delx,y∑

i

countiOA

where counti
OA

is the number of other agents involved in the delegation of sii from

ax to ay.

38. IACOST
x,y : The communication cost due to the delegations from ax to ay. For every

agent in IAx,y, a cost of 2C is added because a message is once sent forward and

once back. Therefore, IACOST
x,y = IAx,y ∗ 2 ∗ C.

39. IALOAD
x,y : The overall management load put on all the intermediate agents involved

in the delegations from ax to ay (that is, Delx,y). The load values are reported

back to ax along with the assignment information (the assignment message). If an

intermediate agent has available capacity (no waiting tasks), it will report a 0 load

value for that delegation. Otherwise, the agent will report the actual management

load that was put on it due to that service instance assignment.

Bibliography

Bernon, C., Chevrier, V., Hilaire, V., and Marrow, P. (2006). Applications of self-

organising multi-agents systems: An initial framework of comparison . Informatica,

30(1):73–82.

Beverly, R. and Afergan, M. (2007). Machine learning for efficient neighbor selection

in unstructured p2p network. In USENIX Tackling Computer Systems Problems with

Machine Learning Techniques (SysML’07), Cambridge, MA, USA.

Bollen, J. and Heylighen, F. (1996). Algorithms for the self-organisation of distributed,

multi-user networks. possible application to the future world wide web. Cybernetics

and Systems ’96, Austrian Society of Cybernetics, pages 911–916.

Bongaerts, L. (1998). Integration of Scheduling and Control in Holonic Manufacturing

Systems. PhD thesis, PMA/K.U. Leuven.

Bou, E., Lopez-Sanchez, M., and Rodriguez-Aguilar, J. A. (2006a). Norm adaptation of

autonomic electronic institutions with multiple goals. International Transactions on

Systems Science and Applications, 1(3):227–238.

Bou, E., Lopez-Sanchez, M., and Rodriguez-Aguilar, J. A. (2006b). Self-configuration

in autonomic electronic institutions. In Coordination, Organization, Institutions and

Norms in Agent Systems Workshop at ECAI Conference, pages 1–9, Trentino, Italy.

Bourjot, C., Chevrier, V., and Thomas, V. (2003). A new swarm mechanism based on

social spiders colonies: From web weaving to region detection. Web Intelligence and

Agent Systems, 1(1):47–64.

Capera, D., George, J.-P., Gleizes, M.-P., and Glize, P. (2003a). The AMAS theory for

complex problem solving based on self-organizing cooperative agents. In Proceedings

of the 12th International Workshop on Enabling Technologies (WETICE ’03), page

383, Washington, DC, USA. IEEE Computer Society.

Capera, D., Gleizes, M. P., and Glize, P. (2003b). Self-organizing agents for mechanical

design. In Engineering Self-Organising Systems, volume 2977 of LNCS, pages 169–185.

Springer.

90

BIBLIOGRAPHY 91

Carley, K. M. and Gasser, L. (1999). Computational organization theory. In Multiagent

Systems: A Modern Approach to Distributed Artificial Intelligence, pages 299–330.

MIT Press, Cambridge, MA, USA.

Cohen, P. R. and Levesque, H. J. (1991). Confirmations and joint action. In Proceedings

of the twelfth International Joint Conference on Artificial Intelligence (IJCAI’91),

pages 951–959, Sydney, Australia. Morgan Kaufmann Inc.

De Wolf, T. and Holvoet, T. (2003). Towards autonomic computing: agent-based mod-

elling, dynamical systems analysis, and decentralised control. In Proceedings of the

First International Workshop on Autonomic Computing Principles and Architectures,

pages 10–20, Banff, Canada.

Di Marzo Serugendo, G., Gleizes, M.-P., and Karageorgos, A. (2005a). Self-organisation

in multi-agent systems. Rapport de recherche IRIT/2005-18-R, IRIT, Universite Paul

Sabatier, Toulouse.

Di Marzo Serugendo, G., Gleizes, M.-P., and Karageorgos, A. (2005b). Self-organization

in multi-agent systems. The Knowledge Engineering Review, 20(2):165–189.

Di Marzo Serugendo, G., Gleizes, M.-P., and Karageorgos, A. (2006). Self-organisation

and emergence in multi-agent systems: An overview . Informatica, 30(1):45–54.

Dignum, V. (2003). A model for organizational interaction: based on agents, founded in

logic. PhD thesis, Proefschrift Universiteit Utrecht.

Dignum, V. and Dignum, F. (2005). Structures for agent organizations. In International

Conference on Integration of Knowledge Intensive Multi-Agent Systems, Waltham,

USA. IEEE Computer Society.

Dignum, V., Dignum, F., and Sonenberg, L. (2004). Towards dynamic reorganization of

agent societies. In Proceedings of the Workshop on Coordination in Emergent Agent

Societies (WCES) at ECAI’04, pages 22–27, Valencia, Spain.

Dowling, J., Cunningham, R., Curran, E., and Cahill, V. (2006). Building autonomic

systems using collaborative reinforcement learning. The Knowledge Engineering Re-

view, 21(3):231–238.

Ferber, J. and Gutknecht, O. (1998). A meta-model for the analysis and design of orga-

nizations in multi-agent systems. In Proceedings of the 3rd International Conference

on Multi Agent Systems (ICMAS ’98), pages 128–135, Washington, DC, USA. IEEE

Computer Society.

BIBLIOGRAPHY 92

Ferber, J., Gutknecht, O., and Michel, F. (2003). From agents to organizations: An

organizational view of multiagent systems. In Proceedings of the Fourth Interna-

tional Workshop on Agent Oriented Software Engineering (AOSE03), page 214230,

Melbourne, Australia. Springer Verlag.

Fischer, K. (2005). Self-organisation in holonic multiagent systems. In Mechanizing

Mathematical Reasoning, volume 2605, pages 543–563. Springer.

Fox, M. S. (1988). An organizational view of distributed systems, pages 140–150. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

Galbraith, J. R. (1977). Organization Design. Addison-Wesley, Reading, MA.

Gasser, L., Braganza, C., and Herman, N. (1988). Implementing distributed AI systems

using MACE. Distributed Artificial Intelligence, pages 445–450.

Gasser, L. and Ishida, T. (1991). A dynamic organizational architecture for adaptive

problem solving. In Proceedings of the Ninth National Conference on Artificial Intel-

ligence (AAAI ’91), pages 185–190, Anaheim, CA.

Gershenson, C. (2007). Design and Control of Self-organizing Systems. PhD thesis, Vrije

Universiteit Brussel.

Grossi, D., Dignum, F., Dignum, V., Dastani, M., and Royakkers, L. (2006). Structural

evaluation of agent organizations. In Proceedings of the fifth international joint confer-

ence on Autonomous agents and multiagent systems (AAMAS ’06), pages 1110–1112,

New York, NY, USA. ACM Press.

Hannoun, M., Boissier, O., Sichman, J. S., and Sayettat, C. (2000). Moise: An orga-

nizational model for multi-agent systems. In Proceedings of the International Joint

Conference, 7th Ibero-American Conference on AI (IBERAMIA-SBIA ’00), pages

156–165, London, UK. Springer-Verlag.

Hassas, S., Di Marzo Serugendo, G., Karageorgos, A., and Castelfranchi, C. (2006). Self-

organising mechanisms from social and business/economics approaches. Informatica,

30(1):63–71.

Holland, J. H. (1998). Emergence: from chaos to order. Addison-Wesley, Reading, MA,

USA.

Hoogendoorn, M. (2007). Adaptation of organizational models for multi-agent systems

based on max flow networks. In Proceedings of the 20th International Joint Conference

on Artificial Intelligence (IJCAI ’07), pages 1321–1326, Hyderabad, India. AAAI

Press.

BIBLIOGRAPHY 93

Hoogendoorn, M., Jonker, C. M., and Treur, J. (2007). Redesign of organizations as

a basis for organizational change. In Coordination, Organizations, Institutions, and

Norms in Agent Systems II (COIN’06 workshops), volume 4386 of LNAI, pages 46–62.

Springer.

Horling, B., Benyo, B., and Lesser, V. (2001). Using self-diagnosis to adapt organiza-

tional structures. In Proceedings of the fifth international conference on Autonomous

agents (AGENTS ’01), pages 529–536, New York, NY, USA. ACM Press.

Horling, B. and Lesser, V. (2005). A survey of multi-agent organizational paradigms.

The Knowledge Engineering Review, 19(4):281–316.

Horling, B. and Lesser, V. (2008). Using quantitative models to search for appropriate

organizational designs. Autonomous Agents and Multi-Agent Systems, 16(2):95–149.

Horn, P. (2001). Autonomic Computing: IBM’s Perspective on the State of Information

Technology.

Hubner, J. F., Sichman, J. S., and Boissier, O. (2004). Using the MOISE+ for a co-

operative framework of MAS reorganisation. In Proceedings of the 17th Brazilian

Symposium on Artificial Intelligence (SBIA’04), volume 3171, pages 506–515, Berlin.

Springer.

Ishida, T., Gasser, L., and Yokoo, M. (1992). Organization self-design of distributed pro-

duction systems. IEEE Transactions on Knowledge and Data Engineering, 4(2):123–

134.

Itao, T., Nakamura, T., Matsuo, M., Suda, T., and Aoyama, T. (2002). Service emer-

gence based on relationship among self-organizing entities. In Proceedings of the 2002

Symposium on Applications and the Internet (SAINT ’02), pages 194–203, Washing-

ton, DC, USA. IEEE Computer Society.

Jelasity, M. and Babaoglu, O. (2005). T-man: Gossip-based overlay topology man-

agement. In Proceedings of Engineering Self-Organising Applications (ESOA’05),

Utrecht, The Netherlands. Springer.

Jin, Y. and Levitt, R. E. (1996). The virtual design team: A computational model of

project organizations. Computational & Mathematical Organization Theory, 2:171–

196(26).

Kamboj, S. and Decker, K. S. (2006). Organizational self-design in semi-dynamic envi-

ronments. In Proceedings of the 5th International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS ’06), pages 335–337, New York, NY, USA.

ACM Press.

BIBLIOGRAPHY 94

Kephart, J. O. and Chess, D. M. (2003). The vision of autonomic computing. IEEE

Computer, 36(1):41–50.

Klein, F. and Tichy, M. (2006). Building reliable systems based on self-organizing multi-

agent systems. In Proceedings of the 2006 international workshop on Software engi-

neering for large-scale multi-agent systems (SELMAS ’06), pages 51–58, New York,

NY, USA. ACM Press.

Knabe, T., Schillo, M., and Fischer, K. (2003). Inter-organizational networks as patterns

for self-organizing multiagent systems. In Proceedings of the second international joint

conference on Autonomous agents and multiagent systems (AAMAS’03), pages 1036–

1037, New York, NY, USA. ACM.

Krackhardt, D. and Carley, K. M. (1998). A pcans model of structure in organizations.

Proceedings of the 1998 International Symposium on Command and Control Research

and Technology, pages 113–119.

Lematre, C. and Excelente, C. B. (1998). Multi-agent organization approach. In Pro-

ceedings of second Ibero-American Workshop on DAI and MAS, Toledo, Spain.

Mainsah, E. (2002). Autonomic computing: the next era of computing. Electronics &

Communication Engineering Journal, 14(1):2–3.

Mamei, M., Vasirani, M., and Zambonelli, F. (2004). Self-organizing spatial shapes

in mobile particles: The tota approach. In Engineering Self-Organising Systems,

Methodologies and Applications (ESOA 04), pages 138–153, New York, USA.

Mano, J.-P., Bourjot, C., Lopardo, G., and Glize, P. (2006). Bio-inspired mechanisms

for artificial self-organised systems. Informatica, 30(1):55–62.

McGinty, L. and Smyth, B. (2002). Shared experiences in personalized route planning.

In Proceedings of the Fifteenth International Florida Artificial Intelligence Research

Society Conference, pages 111–115. AAAI Press.

Mills, K. L. (2007). A brief survey of self-organization in wireless sensor networks.

Wireless Communications and Mobile Computing, 7(7).

Norman, T. J., Preece, A., Chalmers, S., Jennings, N. R., Luck, M., Dang, V. D.,

Nguyen, T. D., Deora, V., Shao, J., Gray, A., and Fiddian, N. (2004). Agent-based

formation of virtual organisations. International Journal of Knowledge Based Systems,

17(2-4):103–111.

Picard, G. and Gleizes, M.-P. (2002). An agent architecture to design self-organizing

collectives: Principles and application. In Adaptive Agents and Multi-Agents Systems,

volume 2636, pages 141–158.

BIBLIOGRAPHY 95

Plaza, E. and McGinty, L. (2005). Distributed case-based reasoning. Knowl. Eng. Rev.,

20(3):261–265.

Schillo, M., Bettina Fley and, M. F., Hillebrandt, F., and Hinck, D. (2002). Self-

organization in multiagent systems: from agent interaction to agent organization. In

Proceedings of the 3rd International Workshop on Modeling Artificial Societies and

Hybrid Organizations (MASHO’02), pages 47–56, Aachen, Germany.

Schlegel, T. and Kowalczyk, R. (2007). Towards self-organising agent-based resource

allocation in a multi-server environment. In Proceedings of the 6th international joint

conference on Autonomous agents and multiagent systems (AAMAS ’07), pages 1–8,

Honolulu, USA. ACM.

Sierra, C., Rodrguez-Aguilar, J. A., Noriega, P., Esteva, M., and Arcos, J. L. (2004).

Engineering multi-agent systems as electronic institutions. UPGRADE The European

Journal for the Informatics Professional, V(4):33–39.

Sims, M., Corkill, D., and Lesser, V. (2008). Automated organization design for multi-

agent systems. Autonomous Agents and Multi-Agent Systems, 16(2):151–185.

Tesauro, G. (2007). Reinforcement learning in autonomic computing: A manifesto and

case studies. IEEE Internet Computing, 11(1):22–30.

Tesauro, G., Chess, D. M., Walsh, W. E., Das, R., Segal, A., Whalley, I., Kephart, J. O.,

and White, S. R. (2004). A multi-agent systems approach to autonomic comput-

ing. In Proceedings of the 3rd International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS ’04), pages 464–471, Washington, DC, USA. IEEE

Computer Society.

Thompson, J. D. (1967). Organizations in Action: Social Science Bases in Administra-

tive Theory. McGraw-Hill, New York, USA.

Tumer, K. and Wolpert, D. (2004). A survey of collectives. In Collectives and the Design

of Complex Systems, pages 1–42. Springer.

Vazquez, L. E. M. and Lopez y Lopez, F. (2007). An agent-based model for hierarchi-

cal organizations. In Coordination, Organizations, Institutions, and Norms in Agent

Systems II (COIN’06 workshops), volume 4386 of LNAI, pages 194–211. Springer.

Vazquez-Salceda, J., Dignum, V., and Dignum, F. (2005). Organizing multiagent sys-

tems. Autonomous Agents and Multi-Agent Systems, 11(3):307–360.

Wang, Z. and Liang, X. (2006). A graph based simulation of reorganization in multi-

agent systems. In Proceedings of the IEEE/WIC/ACM international conference on

Intelligent Agent Technology (IAT ’06), pages 129–132, Washington, DC, USA. IEEE

Computer Society.

BIBLIOGRAPHY 96

Wolpert, D. H. and Tumer, K. (2001). Optimal payoff functions for members of collec-

tives. Advances in Complex Systems, 4(2/3):265–279.

	1 Introduction
	1.1 Research Objectives
	1.2 Report Structure

	2 Related Work
	2.1 Modelling of Agent Organisations
	2.1.1 Modelling Tasks
	2.1.2 Modelling Organisational Characteristics
	2.1.3 Modelling Agents
	2.1.4 Evaluating an Organisation's Effectiveness

	2.2 Self-Organisation in Multi-Agent Systems
	2.2.1 The Basics
	2.2.2 Mechanisms of Self-Organisation
	2.2.3 Examples of Self-Organisation in MAS

	2.3 Summary

	3 Modelling Agent Organisations
	3.1 Task Representation
	3.1.1 Example

	3.2 Organisation Representation
	3.2.1 Organisation Structure
	3.2.2 Agent Decision Mechanism

	3.3 Organisation Performance Evaluation
	3.3.1 Example

	3.4 Summary

	4 Decentralised Structural Adaptation
	4.1 Reorganisation Methods
	4.1.1 Changing the Set of Agents
	4.1.2 Changing the Properties of the Agents
	4.1.3 Changing the Structure of the Organisation

	4.2 Our Reorganisation Method
	4.2.1 Constraints on the Model
	4.2.2 Our Reorganisation Approach
	4.2.3 Value Function Calculation
	4.2.4 Example

	4.3 Summary

	5 Experiments and Results
	5.1 Experimental Design
	5.1.1 Simulation Parameters
	5.1.2 Hypotheses and Experiments

	5.2 Results
	5.3 Summary

	6 Conclusions and Future Work
	6.1 Future Work
	6.1.1 Task 1: Efficient Structural Adaptation
	6.1.2 Task 2: Structural Adaptation in Dynamic Organisations
	6.1.3 Task 3: Multi-step Structural Adaptation

	A Glossary
	Bibliography

